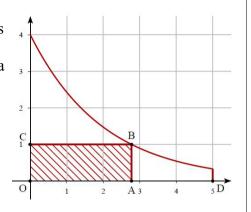
Ex 1: Enclos sur un terrain

Un propriétaire souhaite construire un enclos rectangulaire OABC sur son terrain. Il est délimité par l'axe (Ox), l'axe (Oy), la droite d'équation x=5 et la courbe C_f avec $f(x)=4e^{-0.5x}$ pour $x\in[0;5]$ On note A(x;0) et D(5;0). L'objectif est de déterminer la position du point A sur le segment [OD] permettant d'obtenir un enclos de superficie maximale. (l'unité est le mètre)

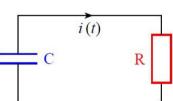


- 1) Déterminer l'expression de l'aire de cet enclos notée g(x)
- 2) Calculer g'(x) et étudier son signe
- 3) En déduire le tableau de variations de g sur l'intervalle [0;5]
- 4) Où doit-on placer le point A sur [OD] pour obtenir une superficie d'enclos maximale ? Donner la superficie maximale arrondie au dm² près

Ex 2 : Décharge d'un condensateur

Un condensateur est un réservoir de charges électriques. Une fois chargé, il conserve sa charge électrique. Si on le relie à une résistance, il se décharge. La tension électrique au borne d'un condensateur u_C est proportionnelle à sa

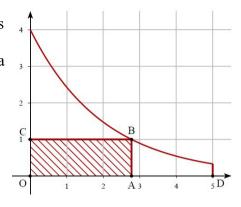
charge q. On a alors : $u_C(t) = \frac{q}{C}$ où C est la capacité du condensateur ; L'intensité électrique en fonction du temps est définie par : $i(t) = \frac{dq}{dt}$



- 1) En utilisant la *loi des mailles* et la *loi d'Ohm* montrer que u_C est solution de l'équation différentielle $u_C'(t) = \frac{-1}{RC}u(t)$ pour tout $t \ge 0$
- 2) On appelle E la tension aux bornes du condensateur à l'instant initial; déterminer l'expression de la fonction solution $u_C(t)$
- 3) On sait que C=0.2F, $u_C(0)=3V$, $u_C(1)=1.1V$; Calculer la valeur de la résistance R arrondie à $0.01\,\Omega$
- 4) On admet que le condensateur est déchargé lorsque $u_C(t) < 0.01 V$; Déterminer le temps nécessaire pour que le condensateur soit déchargé

Ex 1 : Enclos sur un terrain

Un propriétaire souhaite construire un enclos rectangulaire OABC sur son terrain. Il est délimité par l'axe (Ox), l'axe (Oy), la droite d'équation x=5 et la courbe C_f avec $f(x)=4e^{-0.5x}$ pour $x\in[0,5]$ On note A(x;0) et D(5;0). L'objectif est de déterminer la position du point A sur le segment [OD] permettant d'obtenir un enclos de superficie maximale. (l'unité est le mètre)

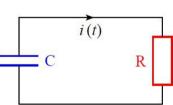


- 1) Déterminer l'expression de l'aire de cet enclos notée g(x)
- 2) Calculer g'(x) et étudier son signe
- 3) En déduire le tableau de variations de g sur l'intervalle [0;5]
- 4) Où doit-on placer le point A sur [OD] pour obtenir une superficie d'enclos maximale? Donner la superficie maximale arrondie au dm² près

Ex 2 : Décharge d'un condensateur

Un condensateur est un réservoir de charges électriques. Une fois chargé, il conserve sa charge électrique. Si on le relie à une résistance, il se décharge. La tension électrique au borne d'un condensateur u_C est proportionnelle à sa

charge q. On a alors : $u_C(t) = \frac{q}{C}$ où C est la capacité du condensateur ; L'intensité électrique en fonction du temps est définie par : $i(t) = \frac{dq}{dt}$



- 1) En utilisant la *loi des mailles* et la *loi d'Ohm* montrer que u_C est solution de l'équation différentielle $u_C'(t) = \frac{-1}{RC}u(t)$ pour tout $t \ge 0$
- 2) On appelle E la tension aux bornes du condensateur à l'instant initial; déterminer l'expression de la fonction solution $u_C(t)$
- 3) On sait que C=0.2F, $u_C(0)=3V$, $u_C(1)=1.1V$; Calculer la valeur de la résistance R arrondie à $0.01\,\Omega$
- 4) On admet que le condensateur est déchargé lorsque $u_C(t) < 0.01 V$; Déterminer le temps nécessaire pour que le condensateur soit déchargé