Tale spé

SOS Maths: Les Matrices

nov 2022

Ex 1: Soit les matrices: $A = \begin{pmatrix} 1 & 0 \\ -2 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 0 & -1 \\ -3 & 2 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 0 \\ 1 & -1 \end{pmatrix}$

- 1) Calculer A.B,B.C,A.(B.C),(A.B).C; que peut-on en déduire?
- 2) Calculer det(A), det(B), det(C) puis A^{-1}, B^{-1}, C^{-1}

Ex 2: On considère les matrices : $M = \begin{pmatrix} -1 & 1 & 3 \\ 2 & 4 & 6 \\ 1 & 3 & 1 \end{pmatrix}$ et $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- 1) Calculer le déterminant de *M* ; que peut-on en déduire ?
- 2) En appliquant la <u>méthode de Gauss-Jordan</u> calculer l'inverse de la matrice M, notée M^{-1} (opérations simultanées sur les lignes de M et I_3)

Ex 3: On considère les matrices : $M = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{pmatrix}$ et $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- 1) Calculer le déterminant de *M* ; que peut-on en déduire ?
- 2) En appliquant la méthode de la matrice adjointe : $Adj(M) = {}^t com(M)$ calculer l'inverse de la matrice M : $M^{-1} = \frac{1}{det(A)} \times Adj(M)$

Ex 4: On considère les matrices : $A = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 3 & 1 \\ 3 & 1 & 0 \end{pmatrix}$ et $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- 1) Calculer A^2 et A^3
- 2) Déterminer les réels a,b,c tels que $A^3 = aI_3 + bA + cA^2$
- 3) Montrer que *A* est inversible sans calculer son déterminant
- 4) En déduire la valeur de A^{-1}

Ex 5: On donne le système suivant : $\begin{cases} x+y+z=2\\ 2x-3z=-7\\ 3x-2y-4z=3 \end{cases}$

On pose les matrices : $A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & -3 \\ 3 & -2 & -4 \end{pmatrix}$, $B = \begin{pmatrix} 2 \\ -7 \\ -5 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

- 1) Résoudre ce système par la méthode du Pivot de Gauss
- 2) Montrer que A.X=B
- 3) Montrer que A est inversible et calculer son inverse A^{-1}
- 4) En déduire les solutions du système
- 5) Retrouver les solutions du système par la méthode de Cramer

Ex 6: On considère les matrices: $M = \begin{pmatrix} 0 & 1 & -1 \\ -3 & 4 & -3 \\ -1 & 1 & 0 \end{pmatrix}$ et $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- 1) Déterminer les matrices M^2 et M^3 (détailler les calculs)
- 2) Déterminer les réels a et b tels que $M^2 = aM + bI_3$
- 3) a) Exprimer la matrice M^3 en fonction de M et I_3
 - b) Exprimer la matrice M^4 en fonction de M et I_3
 - c) Démontrer que $\forall n \in \mathbb{N}$: $M^n = (2^n 1)M + (2 2^n)I_3$
- 4) a) Démontrer que $I_3 = \frac{1}{2}M \times (3I_3 M)$
 - b) En déduire l'existence d'une matrice P telle que $M \times P = I_3$
 - c) Calculer le produit matriciel $P \times M$ (détailler les calculs)
 - d) Que peut-on en déduire pour la matrice P?

Ex 7: On se place dans le repère orthonormé direct (O, \vec{i}, \vec{j}) ; on donne les points A(-1;2), B(3;1), C(2;-4) et la droite (d): y=-2x+3

On note la matrice associée à la rotation $r(O; \theta)$ est $P = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$

- 1) Déterminer les coordonnées des points A',B',C' images par la rotation r_1 de centre O et d'angle $\alpha = \frac{+\pi}{2}$
- 2) Déterminer les coordonnées des points A'', B'', C'' images par la rotation r_2 de centre O et d'angle $\beta = \frac{+\pi}{3}$
- 3) Déterminer l'équation cartésienne de la droite (Δ) image de la droite (d) par la rotation r_3 de centre O et d'angle $\gamma = \frac{+\pi}{6}$
- 4) Déterminer l'équation cartésienne de la droite (Δ') image de la droite (d) par la rotation r_4 de centre O et d'angle $y = \frac{-\pi}{4}$