Ex 1:

Partie A

Soit g la fonction définie sur \mathbb{R} par $g(x)=(2x-1)e^{2x}+1$

- 1) a) Calculer la dérivée g'(x) et étudier son signe
 - b) En déduire le tableau de variations de g
- 2) Montrer que : $\forall x \in \mathbb{R}, g(x) \ge 0$

Partie B

Soit f la fonction définie sur \mathbb{R}^* par $f(x) = \frac{e^{2x} - 1}{x}$

- 1) a) Calculer la dérivée de f et montrer que $f'(x) = \frac{g(x)}{x^2}$
 - b) En déduire le tableau de variations de f
- 2) a) Calculer la limite de f en 0
 - b) Calculer la limite de f en $-\infty$ et en $+\infty$
 - c) En déduire les éventuelles asymptotes à C_f

Ex 2:

On considère la fonction g définie sur \mathbb{R} par : $g(x) = (x^2 + 2x - 1)e^{-x} + 1$

- 1) a) Calculer les limites de g en $-\infty$ et en $+\infty$
 - b) Interpréter graphiquement les résultats obtenus
- 2) a) Montrer que la dérivée de g vérifie $g'(x)=(3-x^2)e^{-x}$
 - b) Étudier le signe de g'(x)
 - c) En déduire le tableau de variations de g
- 3) a) Montrer que l'équation g(x)=0 possède une unique solution α sur l'intervalle [-3;-2]
 - b) Donner une valeur approchée de α à 0.01 près
 - c) En déduire le tableau de signes de g(x)

Ex 1:

Partie A

SOS Maths Tale

Soit g la fonction définie sur \mathbb{R} par $g(x)=(2x-1)e^{2x}+1$

- 3) a) Calculer la dérivée g'(x) et étudier son signe
 - b) En déduire le tableau de variations de g
- 4) Montrer que : $\forall x \in \mathbb{R}, g(x) \ge 0$

Partie B

Soit f la fonction définie sur \mathbb{R}^* par $f(x) = \frac{e^{2x} - 1}{x}$

- 1) a) Calculer la dérivée de f et montrer que $f'(x) = \frac{g(x)}{x^2}$
 - b) En déduire le tableau de variations de f
- 2) a) Calculer la limite de f en 0
 - b) Calculer la limite de f en $-\infty$ et en $+\infty$
 - c) En déduire les éventuelles asymptotes à C_f

Ex 2:

On considère la fonction g définie sur \mathbb{R} par : $g(x) = (x^2 + 2x - 1)e^{-x} + 1$

- 1) a) Calculer les limites de g en $-\infty$ et en $+\infty$
 - b) Interpréter graphiquement les résultats obtenus
- 2) a) Montrer que la dérivée de g vérifie $g'(x)=(3-x^2)e^{-x}$
 - b) Étudier le signe de g'(x)
 - c) En déduire le tableau de variations de g
- 3) a) Montrer que l'équation g(x)=0 possède une unique solution α sur l'intervalle [-3;-2]
 - b) Donner une valeur approchée de α à 0,01 près
 - c) En déduire le tableau de signes de g(x)