EXERCICE 2

Fonction polynôme

(7 points)

Soit la fonction f définie sur [0; 8] par : $f(x) = x^3 - 12x^2 + 36x$.

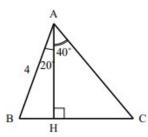
- 1) Déterminer la fonction dérivée f'.
- 2) Résoudre f'(x) = 0 puis dresser le tableau de variation sur [0; 8].
- 3) Déterminer l'équation de la tangente (T_4) à \mathscr{C}_f au point d'abscisse 4.
- 4) Démontrer que $\forall x \in \mathbb{R}, f(x) (-12x + 64) = (x 4)^3$. En déduire la position de (T_4) par rapport à \mathscr{C}_f .

EXERCICE 3

(3 points)

Dans la figure ci-contre

- a) Pourquoi AH = 4 cos 20°
- b) En déduire : HC = 4 cos 20° tan 40°
- c) Donner une mesure de HC arrondie au dixième.

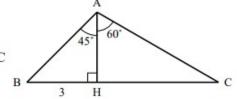


EXERCICE 4

(3 points)

Dans la figure ci-contre

- a) Calculer les valeurs exactes de AH et HC
- b) Démontrer que le périmètre du triangle ABC est égal à $9 + 3\sqrt{2} + 3\sqrt{3}$



EXERCICE 3

Inéquation

(4 points)

Résoudre dans R les inéquations suivantes :

1)
$$5x^2 - 3x > 0$$

$$2) \ x^2 + 3x - 12 \le 2x$$

2)
$$x^2 + 3x - 12 \le 2x$$
 3) $\frac{-2x^2 - x + 3}{x} \ge 0$

EXERCICE 3

Angle et projection

(5 points)

Dans le plan muni d'un repère orthonormé, soit les points A(3; -2), B(5; 2), C(-1; 1).

- 1) Calculer le produit scalaire : $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
- 2) Montrer que : $\cos \widehat{BAC} = \frac{2}{5\sqrt{5}}$ puis en déduire \widehat{BAC} au dixième de degré près.
- 3) Soit le point H projection orthogonale du point C sur la droite (AB). Calculer la longueur AH puis en déduire que $HC = \frac{11}{\sqrt{5}}$.
- 4) Calculer l'aire du triangle ABC.

EXERCICE 4

Suite arithmético-géométrique

(5 points)

Soit la suite (u_n) définie sur \mathbb{N} par : $u_0 = 7$ et $\forall n \in \mathbb{N}$, $u_{n+1} = 0, 5u_n + 3$. On pose $v_n = u_n - 6$

- 1) a) Montrer que la suite (v_n) est géométrique dont on précisera la raison et le premier terme.
 - b) Exprimer v_n puis u_n en fonction de n.
 - c) Donner une valeur approchée de u₈ à 10⁻³ près. Que peut-on conjecturer sur la limite de la suite? Justifier.
- 2) On note $S = v_0 + v_1 + \cdots + v_{100}$.
 - a) Déterminer la valeur exacte de S puis une valeur approchée.
 - b) En déduire une valeur approchée de la somme $S' = u_0 + u_1 + \cdots + u_{100}$.

EXERCICE 2

Calcul de dérivées

(8 points)

1)
$$f(x) = 3x^4 - 18x^2 + 21$$
 2) $f(x) = 4x + \frac{1}{x}$ 5) $f(x) = \frac{2x+1}{x^2 - 3x}$
3) $f(x) = \sqrt{5-2x}$ 4) $f(x) = \frac{3}{x^2 - 1}$ 7) $f(x) = (3x^2 - 5x + 1)^3$

3)
$$f(x) = \sqrt{5 - 2x}$$

4)
$$f(x) = \frac{3}{x^2 - 1}$$

7)
$$f(x) = (3x^2 - 5x + 1)$$

Pour les fonctions suivantes :

- · déterminer l'ensemble sur lequel la fonction est dérivable
- déterminer la fonction dérivée
- réduire au même dénominateur si nécessaire et factoriser lorsque cela est possible.