EXERCICE 2

Fonction polynôme

(7 points)

1) f est dérivable sur \mathbb{R} : $f'(x) = 3x^2 - 24x + 36 = 3(x^2 - 8x + 12)$.

2)
$$f'(x) = 0 \iff x^2 - 8x + 12 = 0 \iff x_1 = \frac{8+4}{2} = 6 \text{ ou } x_2 = \frac{8-4}{2} = 2$$

signe de f'(x) = signe de $x^2 - 8x + 12$.

On obtient le tableau de variation suivant :

$$f(0) = 0$$

$$f(2) = 8 - 48 + 72 = 32$$

$$f(6) = 216 - 12 \times 36 + 36 \times 6 = 0$$

$$f(8) = 512 - 12 \times 64 + 36 \times 8 = 32$$

x	0	2	6	8
f'(x)		+ 0	- ø ·	+
f(x)	0	32 \		32

3)
$$(T_4)$$
: $y = f'(4)(x-4) + f(4)$

$$f(4) = 64 - 192 + 144 = 16$$
 et $f'(4) = 3(16 - 32 + 12) = -12$.

On obtient alors: (T_4) : $y = -12(x-4) + 16 \Leftrightarrow y = -12x + 64$.

4)
$$f(x) - (-12x + 64) = x^3 - 12x^2 + 36x + 12x - 64 = x^3 - 12x^2 + 48x - 64$$
.

$$(x-4)^3 = (x-4)^2(x-4) = (x^2 - 8x + 16)(x-4) = x^3 - 4x^2 - 8x^2 + 32x + 16x - 64$$

= $x^3 - 12x^2 + 48x - 64$

On a donc: $\forall x \in \mathbb{R}$, $f(x) - (-12x + 64) = (x - 4)^3$.

On en déduit que le signe de f(x) - (-12x + 64) est celui de (x - 4) et donc que la courbe \mathcal{C}_f est au dessus de (T_4) si x < 4 et au dessus si x > 4.

La courbe \mathcal{C}_f admet un point d'inflexion en x = 4.

On trace la droite horizontale d'équation y = 5 puis on cherche les abscisses des points de \mathcal{C}_f qui sont sur ou au dessus de la droite d'équation y = 5.

On l'aide de la fonction « intersection » de la calculatrice, on trouve :

$$S = [0, 146; 5,000] \cup [6,854; 8,000].$$

EXERCICE 3 (3 points)

- a) Dans ABH rectangle en H, d'où $\cos 20^\circ = \frac{AH}{AB} \implies AH = 4\cos 20^\circ$
- b) Dans AHC rectangle en H, d'où $\tan 40^\circ = \frac{HC}{AH} \implies HC = AH \tan 40^\circ$ On en déduit $HC = 4 \cos 20^\circ \tan 40^\circ$
- c) HC ≈ 3,2

EXERCICE 4 (3 points)

- a) ABH est rectangle en H et possède un angle de 45° donc, ABH est isocèle en H. On a alors : AH = 3 et AB = $3\sqrt{2}$ Dans le triangle AHC rectangle en H : AC = $\frac{3}{\cos 60^{\circ}}$ = 6 et HC = $3\tan 60^{\circ}$ = $3\sqrt{3}$
- b) périmètre = $3\sqrt{2} + 6 + 3\sqrt{3} + 3 = 9 + 3\sqrt{2} + 3\sqrt{3}$

EXERCICE 3

Inéquation

(4 points)

1) $5x^2 - 3x > 0 \iff x(5x - 3) > 0$ deux racines $x_1 = 0$ ou $x_2 = \frac{3}{5}$.

x	-∞	0		3 5	+	00
x(5x - 3)		+ 0	-	•	+	

$$S =]-\infty \; ; \; 0[\cup] \frac{3}{5} \; ; +\infty \left[$$

2)
$$x^2 + 3x - 12 \le 2x$$
 $\Leftrightarrow x^2 + x - 12 < 0$ on a $\Delta = 1 + 48 = 49 = 7^2$

Deux racines :
$$x_1 = \frac{-1+7}{2} = 3$$
 ou $x_2 = \frac{-1-7}{2} = -4$.

x	-00		-4		3	+00	0
$x^2 + x - 12$		+	•	_	φ	+	

$$S = [-4; 3]$$

3)	$\frac{-2x^2 - x + 3}{x} \geqslant 0 ,$	$D_f = \mathbb{R}^*$.	Valeurs frontières :	x = 0 ou
	$-2x^2 - x + 3 = 0 \Leftarrow$	$\Rightarrow x_1 = 1$	racine évidente P =	$-\frac{3}{2}$ donc $x_2 = -\frac{3}{2}$

х	$-\infty$ $-\frac{3}{2}$	0	1	1 +∞
$-2x^2 - x + 3$	- 0	+	+ () –
x	-	- 0	+	+
$\frac{-2x^2 - x + 3}{x}$	+ 0	-	+ () –

$$S = \left] - \infty; -\frac{3}{2} \right] \cup \left[0; 1 \right]$$

EXERCICE 3

Angle et projection

(5 points)

1)
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \begin{pmatrix} 5-3 \\ 2-(-2) \end{pmatrix} \cdot \begin{pmatrix} -1-3 \\ 1-(-2) \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} -4 \\ 3 \end{pmatrix} = -8+12=4.$$

2)
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \times \overrightarrow{AC} \cos \overrightarrow{BAC} \Rightarrow \cos \overrightarrow{BAC} = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\overrightarrow{AB} \times \overrightarrow{AC}}$$

$$AB = \sqrt{2^2 + 4^2} = \sqrt{20} = 2\sqrt{5} \text{ et } AC = \sqrt{(-4)^2 + 3^2} = \sqrt{25} = 5$$

$$\operatorname{donc} \cos \overrightarrow{BAC} = \frac{4}{10\sqrt{5}} = \frac{2}{5\sqrt{5}} \Rightarrow \overrightarrow{BAC} = \arccos\left(\frac{2}{5\sqrt{5}}\right) \approx 79, 7^{\circ}.$$

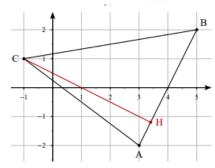
3) Comme H est le projeté orthogonal de C sur (AB) et $\overrightarrow{AB} \cdot \overrightarrow{AC} > 0$, on a :

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH} = \overrightarrow{AB} \times \overrightarrow{AH} \Rightarrow \overrightarrow{AH} = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\overrightarrow{AB}} = \frac{4}{2\sqrt{5}} = \frac{2}{\sqrt{5}}$$

D'après le théorème de Pythagore dans AHC rectangle en H:

$$CH^2 = AC^2 - AH^2 = 25 - \frac{4}{5} = \frac{125 - 4}{5} = \frac{121}{5} \implies CH = \frac{11}{\sqrt{5}}$$

4)
$$\mathcal{A}(ABC) = \frac{1}{2}AB \times CH = \frac{1}{2} \times 2\sqrt{5} \times \frac{11}{\sqrt{5}} = 11$$



Exercice 4

Suite arithmético-géométrique

(5 points)

1) a) $v_{n+1} = u_{n+1} - 6 = 0$, $5u_n + 3 - 6 = 0.5u_n - 3 = 0$, $5(u_n - 6) = 0$, $5v_n$. $\forall n \in \mathbb{N}$, $\frac{v_{n+1}}{v_n} = 0$, 5, la suite (v_n) est géométrique de raison q = 0, 5 et de premier terme $v_0 = u_0 - 6 = 1$.

b)
$$v_n = v_0 q^n = 0, 5^n$$
 donc $u_n = v_n + 6 = 0, 5^n + 6$

c)
$$u_8 = 0.5^8 + 6 \approx 6.004 \text{ à } 10^{-3} \text{ près.}$$

On peut conjecturer que la suite tend vers 6.

En effet $\lim_{n \to +\infty} 0, 5^n = 0$ car -1 < 0, 5 < 1 par somme $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} 0, 5^n + 6 = 6$

2) a)
$$S = v_0 \times \frac{1 - 0.5^{101}}{1 - 0.5} = 2(1 - 0.5^{101}) \approx 2.$$

b)
$$S' = (v_0 + 6) + (v_1 + 6) + \cdots + (v_{100} + 6) = S_n + 101 \times 6 \approx 608$$
.

EXERCICE 2

Calcul de dérivées

(8 points)

1) $f(x) = 3x^4 - 18x^2 + 21$ dérivable sur \mathbb{R} $f'(x) = 12x^3 - 36x = 12x(x^2 - 3) = 12(x - \sqrt{3})(x + \sqrt{3})$

2)
$$f(x) = 4x + \frac{1}{x}$$
 dérivable sur les intervalles de \mathbb{R}^*
 $f'(x) = 4 - \frac{1}{x^2} = \frac{4x^2 - 1}{x^2} = \frac{(2x - 1)(2x + 1)}{x^2}$

3)
$$f(x) = \sqrt{5 - 2x}$$
 dérivable sur $\left] - \infty$; $\frac{5}{2} \left[f'(x) = \frac{-2}{2\sqrt{5 - 2x}} = \frac{-1}{\sqrt{5 - 2x}} \right]$

4)
$$f(x) = \frac{3}{x^2 - 1}$$
 dérivable sur les intervalles de $\mathbb{R} - \{-1; 1\}$
 $f'(x) = \frac{-3(2x)}{(x^2 - 1)^2} = \frac{-6x}{(x^2 - 1)^2}$

5)
$$f(x) = \frac{2x+1}{x^2-3x}$$
 dérivable sur les intervalles de $\mathbb{R} - \{0, ; 3\}$

$$f'(x) = \frac{2(x^2-3x)-(2x-3)(2x+1)}{(x^2-3x)^2} = \frac{2x^2-6x-4x^2-2x+6x+3}{(x^2-3x)^2} = \frac{-2x^2-2x+3}{(x^2-3x)^2}$$

7)
$$f(x) = (3x^2 - 5x + 1)^3$$
 dérivable sur \mathbb{R} . $f'(x) = 3(6x - 5)(3x^2 - 5x + 1)^2$