Cosinus, sinus, tangente

- 1) © Calculer $\frac{\pi}{3} \frac{\pi}{4}$, puis $\cos \frac{\pi}{12}$, $\sin \frac{\pi}{12}$ et $\tan \frac{\pi}{12}$.
 - 2) P Calculer $\tan \frac{\pi}{8}$, puis $\cos \frac{\pi}{8}$ et $\sin \frac{\pi}{8}$.
- \bigcirc \bigcirc \bigcirc Résoudre les équations suivantes d'inconnue x:
 - 1) $\cos(3x) = \sin x$. 2) $\cos x + \sin x = 1 + \tan x$.
 - 3) $\sin x + \sin(2x) = 0$. 4) $\tan(2x) = 3\tan x$.
 - 5) $2\sin x + \sin(3x) = 0$. 6) $3\tan x = 2\cos x$.
 - 7) $\cos x = \sqrt{3} \sin x$. 8) $2\cos(4x) + \sin x = \sqrt{3} \cos x$.
- 7 1) Montrer que $\tan x > x$ pour tout $x \in \left]0, \frac{\pi}{2}\right[.$
 - 2) Montrer que la fonction $x \mapsto \frac{x}{\sin x}$ est bijective de $\left]0, \frac{\pi}{2}\right[$ sur son image que l'on précisera.
- 8 Montrer que : $\sin x \ge x \frac{x^2}{\pi}$ pour tout $x \in [0, \pi]$ en commençant par travailler sur $\left[0, \frac{\pi}{2}\right]$ et en concluant ensuite sans nouvelle étude de fonction.
- © Étudier les variations, les limites aux bornes et la convexité/concavité des fonctions suivantes :
 - 1) $x \mapsto x \operatorname{Arctan} \frac{1}{x}$. 2) $x \mapsto x \operatorname{Arctan} \frac{1}{x-1}$.
- 15 Montrer que pour tout $x \ge 0$: Arctan $x \ge \frac{x}{x^2 + 1}$.
 - 6 Montrer que pour tout $n \ge 2$: $2\cos\frac{\pi}{2^n} = \sqrt{2 + \sqrt{2 + \ldots + \sqrt{2}}} \qquad (n-1 \text{ symboles } \sqrt{\cdot}).$

Cosinus, sinus, tangente

- 1) P Calculer $\frac{\pi}{3} \frac{\pi}{4}$, puis $\cos \frac{\pi}{12}$, $\sin \frac{\pi}{12}$ et $\tan \frac{\pi}{12}$. 2) P P Calculer $\tan \frac{\pi}{9}$, puis $\cos \frac{\pi}{9}$ et $\sin \frac{\pi}{9}$.
- \bigcirc Bésoudre les équations suivantes d'inconnue x:
 - 1) $\cos(3x) = \sin x$. 2) $\cos x + \sin x = 1 + \tan x$.
 - 3) $\sin x + \sin(2x) = 0$. 4) $\tan(2x) = 3\tan x$.
 - 5) $2\sin x + \sin(3x) = 0$. 6) $3\tan x = 2\cos x$.
 - 7) $\cos x = \sqrt{3} \sin x$. 8) $2 \cos(4x) + \sin x = \sqrt{3} \cos x$.
- 1) Montrer que tan x > x pour tout $x \in \left]0, \frac{\pi}{2}\right[$.
 - 2) Montrer que la fonction $x \mapsto \frac{x}{\sin x}$ est bijective de $\left]0, \frac{\pi}{2}\right[$ sur son image que l'on précisera.
- 8 Montrer que : $\sin x \ge x \frac{x^2}{\pi}$ pour tout $x \in [0, \pi]$ en commençant par travailler sur $\left[0, \frac{\pi}{2}\right]$ et en concluant ensuite sans nouvelle étude de fonction.
- (16) Étudier les variations, les limites aux bornes et la convexité/concavité des fonctions suivantes :
 - 1) $x \mapsto x \operatorname{Arctan} \frac{1}{x}$. 2) $x \mapsto x \operatorname{Arctan} \frac{1}{x-1}$.
- 15 Montrer que pour tout $x \ge 0$: Arctan $x \ge \frac{x}{x^2 + 1}$.
- 6 Montrer que pour tout $n \ge 2$: $2\cos\frac{\pi}{2n} = \sqrt{2 + \sqrt{2 + \ldots + \sqrt{2}}} \qquad (n-1 \text{ symboles } \sqrt{\cdot}).$