EXERCICE 1

Prouver dans les cas suivantes que la fonction *F* est une primitive de la fonction f sur un intervalle I proposé.

1)
$$f(x) = \frac{2(x^4 - 1)}{x^3}$$
 et $F(x) = x^2 + \frac{1}{x^2}$ sur $I =]0; +\infty[$

2)
$$f(x) = \frac{1}{1 + e^x}$$
 et $F(x) = x - \ln(1 + e^x)$ sur $I = \mathbb{R}$

3)
$$f(x) = \frac{1}{x \ln x}$$
 et $F(x) = \ln(\ln x)$ sur $I =]1; +\infty[$

4)
$$f(x) = \cos x - x \sin x$$
 et $F(x) = x \cos x$ sur $I = \mathbb{R}$

EXERCICE 4

Forme $u'u^n$

1)
$$f(x) = (x+2)^3$$
, $I = \mathbb{R}$.

4)
$$f(x) = 2x(3x^2 - 1)^3$$
, $I = \mathbb{R}$.

2)
$$f(x) = 2x(1+x^2)^5$$
, $I = \mathbb{R}$.

5)
$$f(x) = \sin x \cos x$$
, $I = \mathbb{R}$.

3)
$$f(x) = \frac{(x-1)^5}{3}$$
, $I = \mathbb{R}$.

6)
$$f(x) = \frac{1}{x} \ln x$$
, $I =]0; +\infty[$.

EXERCICE 5

Forme $\frac{u'}{u}$

1)
$$f(x) = \frac{1}{x-4}$$
, $I =]4; +\infty[$ 3) $f(x) = \frac{2x-1}{x^2-x}$, $I =]0; 1[$

3)
$$f(x) = \frac{2x-1}{x^2-x}$$
, $I =]0; 1[$

2)
$$f(x) = \frac{1}{x-4}$$
, $I =]-\infty$; 4[

4)
$$f(x) = \frac{e^x}{e^x + 2}$$
, $I = \mathbb{R}$

EXERCICE 6

Forme $\frac{u'}{u^n}$, $n \geqslant 2$

1)
$$f(x) = \frac{2}{(x+4)^3}$$
, $I =]-4; +\infty$

1)
$$f(x) = \frac{2}{(x+4)^3}$$
, $I =]-4; +\infty[$ 4) $f(x) = \frac{x-1}{(x^2-2x-3)^2}$, $I =]-1; 3[$

2)
$$f(x) = \frac{1}{(3x-1)^2}$$
, $I = \left] -\infty$; $\frac{1}{3} \left[5 \right] f(x) = \frac{4x^2}{(x^3+8)^3}$, $I = \left[-2 \right] + \infty$

5)
$$f(x) = \frac{4x^2}{(x^3+8)^3}$$
, $I =]-2; +\infty[$

EXERCICE 7

Forme $\frac{u'}{\sqrt{u}}$

1)
$$f(x) = \frac{2}{\sqrt{2x+1}}$$
, $I = \left] -\frac{1}{2}; +\infty \right[$ 2) $f(x) = \frac{2x}{\sqrt{x^2-1}}$, $I =]1; +\infty[$

2)
$$f(x) = \frac{2x}{\sqrt{x^2 - 1}}$$
, $I =]1; +\infty[$

EXERCICE 8

Forme u'eu

1)
$$f(x) = e^{-x+1}$$
 , $I = \mathbb{R}$

3)
$$f(x) = xe^{-\frac{x^2}{2}}$$
, $I = \mathbb{R}$

2)
$$f(x) = 2e^{3x-2}$$
, $I = \mathbb{R}$

4)
$$f(x) = \sin x \times e^{\cos x}$$
, $I = \mathbb{R}$

EXERCICE 9

Forme $u' \times (v' \circ u)$

1)
$$f(x) = \cos(3x) + \sin(2x) , I = \mathbb{R}$$

2) $f(x) = 3\cos x - 2\sin(2x) + 1$, $I = \mathbb{R}$

3)
$$f(x) = \sin\left(\frac{\pi}{3} - 2x\right)$$
, $I = \mathbb{R}$

EXERCICE 13

Résoudre l'équation différentielle proposée :

1)
$$y' = 3y$$

2)
$$y' + 2y = 0$$

3)
$$y' = 2y + 1$$

5)
$$2y + 3y' - 1 = 0$$

4)
$$y + 3y' = 2$$

6)
$$2y' = y - 1$$

EXERCICE 14

Résoudre les équations différentielles proposées avec la condition initiale propo-

1)
$$y = -5y'$$
 avec $f(-2) = 1$

2)
$$y + 2y' = 0$$
 avec $f'(-2) = \frac{1}{2}$

EXERCICE 15

Trouver une équation différentielle de la forme y' = ay + b pour laquelle f est solution.

- 1) f est la fonction définie sur \mathbb{R} par : $f(x) = 3e^{-3x}$.
- 2) f est la fonction définie sur \mathbb{R} par : $f(x) = 3e^{-2x} 4$.