Ex 1: **(*)** - **4 pts** – Lectures graphiques

On donne ci-contre le graphique d'une fonction dérivable *f*

On lit
$$f'(-2)=0, f'(1)=\frac{3}{-1}=-3$$

$$f'(3) = \frac{-2}{3} f'(5) = \frac{4}{1} = 4$$

équations des tangentes à C_f $(T_{-2}): y=6, (T_1): y=-3x+5$ $(T_3): y=\frac{-2}{3}x, (T_5): y=4x-19$

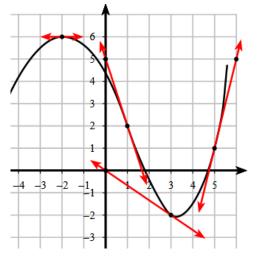


tableau de variations de f:

Х	-4	-2		3,2		6
signe de f '	+	0	_	0	+	
f	4	6		-2,1		5

tableau de signes de f:

X	-4		1,8		4,6		6
f(x)		+	0	_	0	+	

extrema locaux de la fonction f sur [-3;5]:

- f admet un maximum local en x=-2
- f admet un minimum local en x=3,2

Ex 2: (**) - 3 pts – Calculs de dérivées

On donne la fonction f définie sur [-2;4] par $f(x)=-x^3+3x^2-4$

la dérivée de f est : $f'(x)=-3x^2+6x$ les racines de la dérivée vérifient f'(x)=0 donc $-3x^2+6x=0$ donc (3x)(2-x)=0 donc x=0 ou x=2

de plus le signe de la dérivée f'(x) est :

- positif entre les racines 0 et 2
- négatif à l'extérieur des racines 0 et 2

On obtient le tableau de variations de f:

Х	-2	0		2		4
signe de f '	_	0	+	0	_	
f	16	-4		0		-20

extrema locaux et globaux de f sur [-2;4]:

- f admet un maximum local en x=2
- f admet un minimum local en x=0

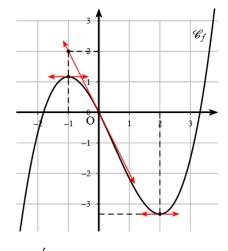
Ex 3: (***) - 3 pts – Analyse de courbes Soit f définie sur [-3;4] par $f(x)=a x^3+b x^2+c x+d$

on lit
$$f(-1)=1$$
 $f(0)=0$, $f(2)=-3$,3
on lit $f'(-1)=0$, $f'(0)=-2$, $f'(2)=0$

on a:
$$f'(x)=3ax^2+2bx+c$$

on obtient le système suivant :

$$\begin{cases} f'(-1)=0 \\ f'(0)=-2 \\ f'(2)=0 \end{cases} \text{ donc } \begin{cases} 3a-2b+c=0 \\ c=-2 \\ 12a+4b+c=0 \end{cases}$$



donc
$$\begin{cases} 3a-2b=2\\ 12a+4b=2 \end{cases}$$
 donc $\begin{cases} 6a-4b=4\\ 12a+4b=2 \end{cases}$ donc $\begin{cases} a=\frac{1}{3}\\ b=\frac{-1}{2} \end{cases}$ avec $c=-2$

de plus
$$f(0)=0$$
 donc $d=0$; ainsi $f(x)=\frac{1}{3}x^3-\frac{1}{2}x^2-2x$
ainsi $f'(x)=x^2-x-2=(x-2)(x+1)$

tableau de variations de f sur [-3;4]:

Х	-3	-1		2		4
signe de f'	+	- 0	_	0	+	
f	-7,5	1,17		-3,33		5,33