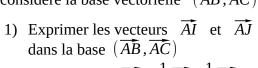
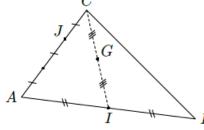
1ère spé

Ex 1: (*) - **3 pts**On donne les droites suivantes dans un repère orthonormé $(d_1): y = \frac{-3}{4}x + \frac{1}{4}$, $(d_2): -x + 4y - 6 = 0$, $(d_3): 2x + 4 = 0$, $(d_4): y = 3$

- 1) Construire dans un même repère ces 4 droites
- 2) Pour chaque droite donner un vecteur directeur et un vecteur normal

Ex 2: (*) - **2 pts** On donne les points A(1;-4) et B(-2;2) dans un repère orthonormé $(O;\vec{i},\vec{j})$; Déterminer une équation cartésienne de la droite (AB) (aucune figure n'est demandée)


Ex 3: **(*)** - **3 pts** Soit la droite (d) passant par le point B(-5;2) et de vecteur normal $\vec{n} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ dans un repère orthonormé $(O; \vec{i}, \vec{j})$


- 1) Donner les coordonnées d'un vecteur directeur \vec{u} de la droite (d)
- 2) En déduire une équation cartésienne de (d)

Ex 4 : () - 3 pts** On donne les droites suivantes dans un repère orthonormé (d): x+2 y-7=0 et (d'): -5 x+6 y+7=0

- 1) Justifier que les droites (d) et (d') sont sécantes
- 2) Déterminer les coordonnées du point d'intersection E des droites (d) et (d') par la méthode de votre choix

Ex 6: Soit ABC un triangle où I et G sont les milieux de [AB] et [CI]; de plus J est défini par $\overrightarrow{CJ} = \frac{1}{3}\overrightarrow{CA}$; on considère la base vectorielle $(\overrightarrow{AB}, \overrightarrow{AC})$

- 2) Montrer que $\overline{AG} = \frac{1}{4}\overline{AB} + \frac{1}{2}\overline{AC}$
- 3) En déduire l'alignement des points B,G,J

Ex 7 : Dans le plan, on considère un triangle ABC et les points M, N, P définis par $\overrightarrow{BM} = \frac{1}{3} \overrightarrow{BA}$, $\overrightarrow{BN} = \frac{1}{2} \overrightarrow{BC}$, $\overrightarrow{AP} = 2 \overrightarrow{AC}$ (Faire une figure)

Montrer que les points M, N, P sont alignés

Ex 1: (*) - **3 pts**On donne les droites suivantes dans un repère orthonormé (d_1) : $y = \frac{-3}{4}x + \frac{1}{4}$, (d_2) : -x + 4y - 6 = 0, (d_3) : 2x + 4 = 0, (d_4) : y = 3

- 3) Construire dans un même repère ces 4 droites
- 4) Pour chaque droite donner un vecteur directeur et un vecteur normal

Ex 2: (*) - 2 pts On donne les points A(1; -4) et B(-2; 2) dans un repère orthonormé $(O; \vec{i}, \vec{j})$; Déterminer une équation cartésienne de la droite (AB) (aucune figure n'est demandée)

Ex 3 : **(*)** - **3 pts** Soit la droite (d) passant par le point B(-5;2) et de vecteur normal $\vec{n} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ dans un repère orthonormé $(O; \vec{i}, \vec{j})$

- 1) Donner les coordonnées d'un vecteur directeur \vec{u} de la droite (d)
- 2) En déduire une équation cartésienne de (d)

Ex 4 : () - 3 pts** On donne les droites suivantes dans un repère orthonormé (d): x+2y-7=0 et (d'): -5x+6y+7=0

- 1) Justifier que les droites (d) et (d') sont sécantes
- 2) Déterminer les coordonnées du point d'intersection E des droites (d) et (d') par la méthode de votre choix

Ex 6 : Soit ABC un triangle où I et G sont les milieux de [AB] et [CI] ; de plus J est défini par $\overrightarrow{CJ} = \frac{1}{3}\overrightarrow{CA}$; C on considère la base vectorielle $(\overrightarrow{AB}, \overrightarrow{AC})$

1) Exprimer les vecteurs \overrightarrow{AI} et \overrightarrow{AJ} dans la base $(\overrightarrow{AB}, \overrightarrow{AC})$

- 2) Montrer que $\overrightarrow{AG} = \frac{1}{4}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$
- 3) En déduire l'alignement des points B,G,J

Ex 7: Dans le plan, on considère un triangle ABC et les points M, N, P définis par $\overrightarrow{BM} = \frac{1}{3} \overrightarrow{BA}$, $\overrightarrow{BN} = \frac{1}{2} \overrightarrow{BC}$, $\overrightarrow{AP} = 2 \overrightarrow{AC}$ (Faire une figure)

Montrer que les points M, N, P sont alignés