Ex 1 : (*) - On considère la loi de probabilité d'une v.a. X:

k	-2	-1	1	2	3
$p_{\scriptscriptstyle k}$	0,1	0,2	0,3	0,2	а

1) Calculer la valeur de *a*

2) Calculer E(X) , V(X) puis $\sigma(X)$

Ex 2 : (*) - On considère la loi de probabilité d'une v.a. X:

k	-2	-1	1	2	3
p_{k}	0,25	0,3	0,15	а	b

1) Calculer les valeurs de a et b si E(X)=0

2) Calculer V(X) puis $\sigma(X)$

 $Ex\ 3: (**)$ - On lance <u>une pièce truquée</u> de sorte que p(*«pile»*)=0,4 et p(*«face»*)=0,6 ; On effectue 3 lancers successifs avec remise de cette pièce truquée ; soit X la variable aléatoire comptant le nombre de « pile » obtenu ;

- 1) Construire un arbre pondéré (en indiquant les feuilles)
- 2) Déterminer la loi de probabilité de X
- 3) Calculer E(X) , V(X) puis $\sigma(X)$
- 4) Reprendre cet exercice avec 4 lancers successifs

Ex 4 : (**) - On considère une variable aléatoire X qui suit une loi binomiale de paramètres n=20 et p=0,4

- 1) a) Calculer p(X=3) ; p(X=17) ; p(X=10) b) Calculer $p(X \le 1)$; $p(X \ge 18)$; $p(X \le 15)$ et $p(X \ge 10)$
- 2) Construire l'histogramme de la distribution de X

Ex 5 : (***) -L'expérience consiste à lancer deux dés à 4 faces, un bleu et un rouge, que l'on suppose équilibrés. Soit a le résultat obtenu par le dé bleu et b le résultat obtenu par le rouge. On considère (E) : $a x^2 + b x + 1 = 0$

- 1) Combien d'équations différentes obtient-on?
- 2) On note X la v.a. représentant le nombre de solutions de (E)
 - a) Déterminer la loi de probabilité de *X*
 - b) Calculer E(X), V(X) puis $\sigma(X)$

Ex 6: (**) - Une urne contient 2 boules rouges et n boules blanches avec $n \ge 1$; Les boules sont indiscernables. On prélève au hasard 2 boules de l'urne sans remise; soit la variable aléatoire X égale au gain algébrique du joueur

- Si elle est rouge, on gagne 10€
- Si elle est blanche, on perd 1€
- 1) On suppose dans cette question qu'il y a 10 boules blanches (n=10)
 - a) Déterminer la loi de probabilité de X
 - b) Calculer l'espérance de X; ce jeu est-il équitable?
 - c) Déterminer l'intervalle de confiance du gain du joueur
- 2) On suppose maintenant que n est un entier positif quelconque.
 - a) Déterminer la loi de probabilité de X
 - b) Exprimer E(X) en fonction de n
 - c) Pour quelles valeurs de n le jeu est-il équitable ?
 - d) Pour quelles valeurs de n a-t-on $E(X) \ge 0$?
 - e) Calculer *n* pour avoir E(X)=2

Vers la Terminale spé maths → Théorie du dénombrement

Ex 7: **(*)** - Construire le triangle de PASCAL permettant de calculer les valeurs des coefficients binomiaux $\binom{n}{k}$ pour $0 \le k \le 8$ et $0 \le n \le 8$

1) Déterminer les développements suivants : $A=(a+b)^3$, $B=(a-b)^3$, $C=(a+b)^4$, $D=(a-b)^4$

2) Déterminer les factorisations suivants : $E=a^3-b^3$; $F=a^3+b^3$; $G=a^4-b^4$; $H=a^5-b^5$

Ex 9: (**) - Les propositions suivantes sont-elles vraies ou fausses ?

a)
$$\binom{9}{3} = \binom{9}{6}$$
 b) $\binom{8}{4} = 2\binom{4}{2}$ c) $\binom{5}{2} + \binom{5}{3} = \binom{10}{5}$ d) $\binom{9}{5} = 3\binom{8}{5}$ e) $\binom{7}{1} = 7$

Ex 10 : (***) - Démontrer les relations suivantes :

a)
$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$
 b) $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$ c) $\sum_{k=0}^{n} \binom{n}{2k} = 2^{n-1}$ d) $\sum_{k=0}^{n} \binom{n}{2k+1} = 2^{n-1}$