L'INTENSITE ET LA TENSION ELECTRIQUE

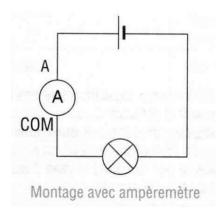
CORRIGES DES EXERCICES

Exercice n° 1 page 84

Le schéma normalisé est le schéma n° 2.

Exercice n° 2 page 84

- a) Une tension peut exister entre deux points entre lesquels ne passe aucun courant.
- b) Un courant peut exister dans un dipôle sans tension entre ses bornes.


Exercice n° 3 page 84

L'ampèremètre est bien branché dans le cas n° 2.

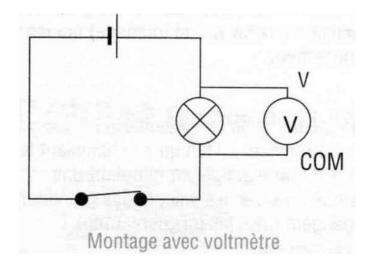
Exercice n° 4 page 84

L'intensité mesurée est I = 339 mA

Exercice n° 5 page 84

Exercice n° 6 page 84

L'unité d'intensité est l'ampère de symbole A


Exercice n° 7 page 84

Le voltmètre mesure la tension aux bornes de la lampe dans le cas n° 2.

Exercice n° 8 page 84

La tension mesurée est U = 3.82 V

Exercice n° 9 page 84

Exercice n° 10 page 84

L'unité de tension est le **volt** de symbole **V**

Exercice n° 11 page 84

Un voltmètre branché aux bornes d'une pile affiche une valeur non nulle en circuit ouvert et fermé.

Exercice n° 12 page 85

La borne verte est négative et la borne bleue est positive.

Exercice n° 13 page 85

1 : ampère

2 : intensité

3: volt

4 : ampèremètre

5 : tension

6 : voltmètre

Exercice n° 14 page 85

- a) Le moteur de recherche utilisé est Google.
- b) La taille de l'image est 51 ko.
- c) La grandeur dont l'unité porte le nom d'Ampère est l'intensité.

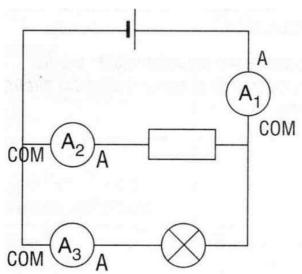
Exercice n° 15 page 85

Il suffit de retourner la pile ou l'ampèremètre.

Exercice n° 16 page 85

- a) Le calibre utilisé est 2000 mA.
- b) Le calibre le mieux adapté est celui de **200 mA** car il est immédiatement supérieur à la valeur mesurée.
- c) Le calibre interdit est 20 mA.

Exercice n° 17 page 85


a) et b) - lampe domestique : $0.250 \text{ A} = \underline{250 \text{ mA}}$

- diffuseur électrique d'odeurs : $\underline{8 \text{ mA}}$ = 0,008 A - fer à repasser : 0,00535 kA = $\underline{6,35 \text{ A}}$

Exercice n° 18 page 86

a) L'ampèremètre qui mesure l'intensité du courant dans la résistance est A2.

b)

Exercice n° 19 page 86

a) Eolienne : 0,3 kA = 300 A Lampe économique : 35 mA = 0.035 A

b) L'éolienne utilise **l'énergie du vent** qui est une énergie non polluante. Une lampe économique **consomme moins d'énergie** qu'une lampe à incandescence.

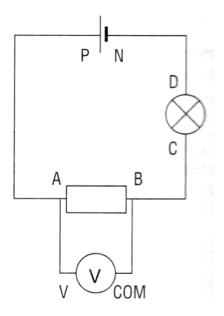
Exercice n° 20 page 86

- a) Benjamin Franklin (1706 1790) était **un savant et un philosophe américain** qui a inventé le **paratonnerre**.
- b) Le passage du courant électrique dans le cerf-volant se manifeste par une étincelle.
- c) Certaines personnes ont été tuées par la foudre.

Exercices n° 21 page 86

- a) Les oiseaux ne sont pas en danger car ils ne sont pas soumis à une tension.
- b) Ils sont à ce moment là soumis à une forte tension et peuvent être électrocutés.

Exercice n° 22 page 86


Exercice résolu

Exercice n° 23 page 86

Tension aux bornes de la lampe	nulle	non nulle
Tension aux bornes de la pile	non nulle	non nulle
Tension aux bornes d'un fil de connexion	nulle	nulle
Tension aux bornes de l'interrupteur	non nulle	nulle

Exercice n° 24 page 86

- a) Il doit brancher le voltmètre en dérivation.
- b) Le nom des bornes d'un voltmètre est la borne COM et la borne V.
- c) La borne V est reliée au point A et la borne COM au point B.

Exercice n° 25 page 87

- a) Le calibre est trop petit dans le cas n° 1
- b) La mesure la plus précise est dans le cas n° 3
- c) Le calibre est le mieux adapté dans le cas n° 3

Exercice n° 26 page 87

a) $400\ 000\ V = 400\ kV$

b) $400\ 000\ V = 4.10^5\ V$

Exercice n° 27 page 87

a) et b) - pile ronde : 1.5 V = 1500 mV

- Téléphone : $48000 \text{ mV} = \underline{48 \text{ V}}$

- ligne très haute tension : 400 kV = 400 000 V

- diode électroluminescente : $\overline{2000 \text{ mV}} = \underline{2 \text{ V}}$

Exercice n° 28 page 87

Tu ressens un petit picotement sur le bout de la langue

Un faible courant électrique s'établit dans la langue à cause de la tension aux bornes de la pile.