Exercices 2; 7 et 7 p 258 (numéros verts corrigés en fin de livre)

Pour l'exercice 9, soit faire la méthode du livre p245 ou la méthode donnée dans l'exercice d'application donné en visio.

Exercices 10; 13 et 14 p 259

1.
$$x_I = \frac{x_B + x_C}{2} = \frac{4+2}{2} = 3$$
; $y_I = \frac{y_B + y_C}{2} = \frac{-1+8}{2} = 3.5$.

Le point I a pour coordonnées (3;3,5).

2. Un vecteur normal à Δ a pour coordonnées $\begin{pmatrix} a \\ b \end{pmatrix}$. Par lecture des coefficients, a=-3 et b=2.

 \vec{n} , un vecteur normal à Δ , a pour coordonnées $\begin{pmatrix} -3\\2 \end{pmatrix}$.

3.
$$\overrightarrow{BC} \begin{pmatrix} 2-4 \\ 8-(-1) \end{pmatrix} = \begin{pmatrix} -2 \\ 9 \end{pmatrix}$$

 $-2 \times 2 - (-3) \times 9 = 23 \neq 0$. Les vecteurs \vec{n} et \overrightarrow{BC} ne sont pas colinéaires.

4. La droite médiatrice d'un segment est la droite perpendiculaire à ce segment en son milieu. Le vecteur \vec{n} normal à la droite Δ n'est pas colinéaire au vecteur \vec{BC} , vecteur directeur de la droite (BC). On en déduit que les droites Δ et (BC) ne sont pas perpendiculaires et par conséquent que la droite Δ ne peut pas être la médiatrice du segment [BC].

1 1. $\vec{u} \begin{pmatrix} -2 \\ -4 \end{pmatrix}$ est un vecteur directeur de la droite \mathfrak{D} et un vecteur normal pour la droite perpendiculaire à \mathfrak{D} passant

par B. La droite perpendiculaire à $\mathfrak D$ et passant par le point B admet une équation cartésienne de la forme -2x-4y+c=0 avec $c\in\mathbb R$.

B appartient à la droite perpendiculaire à $\mathfrak D$

$$\Leftrightarrow -2x_B - 4 \times y_B + c = 0 \Leftrightarrow -2 \times 0 - 4 \times (-2) + c = 0$$
$$\Leftrightarrow c = -8.$$

La droite perpendiculaire à \mathfrak{D} et passant par le point B a pour équation cartésienne -2x-4y-8=0.

2. $\vec{u} \begin{pmatrix} -2 \\ -4 \end{pmatrix}$ est un vecteur directeur pour la droite parallèle à

 \mathfrak{D} passant par le point C(3;3).

La droite parallèle à \mathfrak{D} et passant par le point C admet une équation cartésienne de la forme -4x + 2y + c = 0 avec $c \in \mathbb{R}$. C appartient à la droite parallèle à \mathfrak{D}

$$\Leftrightarrow -4x_C + 2 \times y_C + c = 0$$

$$\Leftrightarrow -4 \times 3 + 2 \times 3 + c = 0 \Leftrightarrow c = 6.$$

La droite parallèle à \mathfrak{D} et passant par le point C a pour équation cartésienne -4x + 2y + 6 = 0.

14
$$\Delta$$
: $2x + y = 0$ et $2 \times (-2) + 5 \neq 0$, donc E n'appartient pas à Δ .

$$2 \times x_E + 1 \times y_E =$$

Rappels : Deux vecteurs $\vec{u}(x;y)$ et $\vec{v}(x';y')$ sont colinéaires si et seulement si xy'-x'y=0

Un vecteur directeur est:

$$\vec{u}(-b; a)$$
; ici -b = -2; b=2

et
$$a = -4$$

La droite Δ est perpendiculaire à la droite (d) d'équation -x+2y+21=0 donc un vecteur directeur \vec{u} de Δ est un vecteur normal de (d) $\vec{n}(-1;2)$ donc $\vec{u}(-1;2)$

$$\vec{u}(-b;a)$$
 donc a =2 et b=1

43 a. Une équation cartésienne de d' est x + 3y - 3 = 0.

$$\overrightarrow{u_1} \begin{pmatrix} -3 \\ 1 \end{pmatrix}$$
 et $\overrightarrow{u_2} \begin{pmatrix} -3 \\ 1 \end{pmatrix}$ sont des vecteurs directeurs respectifs des

droites d et d'.

 $\overrightarrow{u_1} = \overrightarrow{u_2}$, on en déduit que les vecteurs $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ sont colinéaires et que les droites d et d' sont parallèles.

b.
$$\overrightarrow{n_1} \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
 et $\overrightarrow{n_2} \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ sont des vecteurs normaux respectifs

des droites d et d'.

 $\overrightarrow{n_1} = \overrightarrow{n_2}$, on en déduit que les vecteurs $\overrightarrow{n_1}$ et $\overrightarrow{n_2}$ sont colinéaires et que les droites d et d' sont parallèles.

c. Une équation réduite de d est $y = -\frac{1}{3}x + \frac{1}{3}$.

Les droites d et d' ont le même coefficient directeur $-\frac{1}{3}$, elles sont donc parallèles.

 \overrightarrow{BC} $\begin{pmatrix} -2-3\\8-2 \end{pmatrix} = \begin{pmatrix} -5\\6 \end{pmatrix}$. Le vecteur \overrightarrow{BC} est un vecteur directeur de la droite (BC).

Le vecteur $\vec{u} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ est un vecteur directeur de la droite Δ .

 $\overrightarrow{BC} \cdot \overrightarrow{u} = -5 \times 1 + 6 \times 1 = 1 \neq 0$. On en déduit que les vecteurs \overrightarrow{BC} et \overrightarrow{u} ne sont pas orthogonaux, que les droites (BC) et Δ ne sont pas perpendiculaires, la droite Δ ne peut donc pas être la médiatrice du segment [BC].

Si D' est le symétrique de D par rapport à la droite Δ alors Δ est la médiatrice du segment [DD'].

 $\overrightarrow{DD'}\begin{pmatrix} -3-0\\2-4\end{pmatrix} = \begin{pmatrix} -3\\-2 \end{pmatrix}$. Le vecteur $\overrightarrow{DD'}$ est un vecteur directeur de la droite (DD').

Le vecteur $\vec{u} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ est un vecteur directeur de la droite Δ .

 $\overrightarrow{DD'} \cdot \overrightarrow{u} = -3 \times 1 - 2 \times 2 = -7 \neq 0$. On en déduit que les vecteurs $\overrightarrow{DD'}$ et \overrightarrow{u} ne sont pas orthogonaux, que les droites (DD') et Δ ne sont pas perpendiculaires, la droite Δ ne peut donc pas être la médiatrice du segment [DD'] et par conséquent D' n'est pas le symétrique de D par rapport à Δ .