Fourier et le double vitrage

Fourier et le double vitrage

       L’intérêt de multiplier les couches de verre en intercalant un espace vide était connu dès les Romains. Ils équipaient leurs thermes de fenêtres doubles. Entre le XVIe et le XIXe siècle, les progrès consistent à rendre les verres transparents de plus en plus solides. Il faut cependant attendre la fin du XIXe siècle pour qu’un même battant soit envisagé comme support d’un double vitrage.

En 1865, un inventeur new-yorkais, Thomas Stetson, dépose un brevet pour une fenêtre en Insulated glass (verre isolé). Il célèbre alors les qualités thermiques et phoniques de son invention, la lame d’air entre les vitres constituant un bien meilleur isolant que le verre. Il faut pourtant attendre 1930 pour que l’entreprise CD Haven produise de façon industrielle du double vitrage.    (d’après Système D)

Le double vitrage constitue un élément important de l’isolation des habitations et il est instructif de voir comment Joseph Fourier a traité la théorie qui sous-tend cette technique. Le principe est abordé à l’article 87 (section VI du chapitre I) de la Théorie de la chaleur (1822). Pour un non-mathématicien, la lecture de ce passage est une bonne introduction à l’œuvre : pas (encore) de recours aux équations aux dérivées partielles, juste des formules de physique assez élémentaires pour être comprises du bachelier moyen. Rappelons que la Théorie de la chaleur est constituée de 433 articles regroupés en neuf chapitres, eux-mêmes divisés en sections, qui traitent progressivement des différents aspects de la théorie envisagés par Joseph Fourier. Les séries, solutions des équations différentielles rendant compte du mouvement de la chaleur qui ont fondé la renommée de l’auteur, ne commencent à être traitées qu’à partir de l’article 104, au chapitre II de l’ouvrage.

Théorie de la Chaleur, § 87 (page 75 de l’édition conservée par Gallica)

« Si le même espace était échauffé par deux ou plusieurs foyers de différente espèce [1], ou si la première enceinte était elle-même contenue dans une seconde enceinte séparée de la première par une masse d’air, on déterminerait facilement aussi le degré de l’échauffement et les températures des surfaces.

En supposant qu’il y ait, outre le premier foyer s, une seconde surface échauffée p dont la température constante soit b, et la conducibilité extérieure j, on trouvera, en conservant toutes les autres dénominations, l’équation suivante :

m – n = [(a sg/S + b sj/S) (e/K + I/H + I/h)] / [I + ( sg/S + pj/S) (e/K + I/H + I/k)]

si l’on ne suppose qu’un seul foyer s, et si la première enceinte est elle-même contenue dans une seconde, on représentera par S’, h’, k’, H’, les éléments de la seconde enceinte qui correspondent à ceux de la première, que l’on désigne par S, h, k, H, et l’on trouvera, en nommant p la température de l’air qui environne la surface extérieure de la seconde enceinte, l’équation suivante :

m – p = [(a – n) P]/ (I + P)

La quantité P représente :

 s /S (g/h + ge/k + g/H)  +  s/S’ (g/h’ + ge’/k’ + g/H’)

on trouverait un résultat semblable si l’on supposait trois ou un plus grand nombre d’enceintes successives ; et l’on en conclut que ces enveloppes solides, séparées par l’air, concourent beaucoup à augmenter le degré de l’échauffement, quelque petite que soit leur épaisseur. »

 

[1] Cette formulation, un peu obscure prise isolément ici, est explicitée dans les articles précédents où l’on peut découvrir comment est étudiée l’hypothèse de plusieurs individus enfermés dans une pièce d’habitation et concourant à l’élévation de la température de la pièce.

About cm1

R. Timon, né en 1944 a été instituteur, maître formateur, auteur de manuels pédagogiques avant d’écrire pour le Webpédagogique des articles traitant de mathématiques et destinés aux élèves de CM1, CM2 et sixième.

Category(s): application, étude, illustrations, travaux

Laisser un commentaire