Sikra – Des travaux d’élèves au bilan

La restitution d’un travail de groupe est souvent un point délicat et donc souvent négligé. Voici ce que je propose autour de la ressource dont j’ai déjà parlé ici, Sikra. Ainsi, dans un premier temps les élèves ont analysé les dessins géométriques, ils les ont codé lors d’une travail individuel et même testé à l’aide d’un logiciel de géométrie dynamique. Ensuite par groupe de trois ils ont cherché des programmes de construction des cinq premiers motifs. Il avait à disposition, leurs figures codées et un lexique des programmes de construction.

Le déroulement

Après avoir récupéré les travaux, vient le moment de les classer et d’en sélectionner quelques-uns – inutile de tous les montrer – de façon à en tirer un bilan pertinent pour les élèves. Un diaporama est alors projeté et c’est aux élèves de « critiquer » les productions projetées. Mais attention, critiquer c’est d’abord dire une chose positive sur le travail exposé à tous. C’est important de commencer par une chose positive, le penchant naturel de la classe pousse souvent à dire ce qui ne va pas…

Voici les travaux choisis et ce que l’on peut en dire.

Les élèves ont un peu de mal à tirer quelque chose de positif de ce premier travail. Mais tout de même, le programme « marche », ça fonctionne, on comprends et c’est bien là le principal. Ensuite on note un effort de vocabulaire. Il faut insister de façon à valoriser ce travail qui est loin d’être inintéressant malgré son apparence pauvre. Ensuite, viennent les « critiques ». Comment peut-on améliorer ce travail ? L’écriture, la construction de phrase. Oui. Et mathématiquement ? Les notations bien entendu. Nous passons rapidement à la suite.

Le contraste est flagrant. Les compliments pleuvent. Et pourtant les mêmes soucis de notations apparaissent.

Enfin, nous terminons sur une production qui permet de se faire une idée de ce que l’on attend. Cette production fera office de corrigé.

Nous passons au deuxième motif.

La lecture est difficile et nous en profitons pour dire aux élèves qu’il est important, non pas d’avoir une belle écriture mais une écriture parfaitement lisible. La plupart des élèves ne voit aucune amélioration possible pour ce programme. En effet, pour beaucoup d’élèves, « entre A et B » est synonyme de « milieu ». Alors nous disons qu’en mathématiques, il faut être précis et que chaque mot est important. Nous montrons le travail suivant qui est remarquable à plusieurs égards.

D’abord, les points E, F, G et H n’ont pas été définis. Un oubli sans doute… Et puis il y a cette mention des quatre angles droits au sujet du carré ABCD. A-t-on déjà vu un carré qui n’a pas ses quatre angles droits ? Il y a là une intrusion du descriptif, nécessaire lors de l’analyse du dessin et qui n’a pas sa place dans le programme de construction. Et puis il y a cette dernière phrase : tracer les segments EFGH. Les élèves ne sont pas gênés par cette tournure et nous les suivons en disant qu’il s’agit surtout d’une maladresse pour dire « le carré EFGH ».

Nous montrons ensuite une dernière production suffisamment élaborée qui permet de conclure sur ce motif. Pour la suite, nous allons parler du cercle avec le troisième motif.

Ce que nous voulons pointer avec ce travail c’est la différence entre le lexique du matériel de géométrie et le lexique de la géométrie. Nous prenons comme exemple l’utilisation de GeoGebra car les élèves y ont déjà testé leurs figures lors d’une précédente séance. Sous GeoGebra, il n’y a pas de pointe de compas alors comment faire ? Nous faisons appel à la classe et certains élèves parlent de centre et de rayon. Nous validons et passons à la suite.

Bien sûr, les élèves n’ont pas oublié les critiques sur les notations. Nous nous arrêtons sur « le cercle qui devra toucher le milieu du carré ». Nous expliquons qu’il s’agit sans doute « du milieu du côté du carré » mais que l’expression du fait que le cercle est tangent au côté du carré est améliorable. Comment ? En montrant la dernière production.

Nous voulons enfin terminer par une production qui relance les élèves Avant d’écrire un programme de construction il faut bien analyser le dessin afin d’en comprendre une possible construction. Nous questionnons alors les élèves sur la pertinence de la mesure 3 mm pour s’accorder à dire qu’il faut retourner à l’analyse du motif.

Il s’agit d’ailleurs plus d’un va-et-vient entre la rédaction du programme et sa mise à l’épreuve sous GeoGebra, le logiciel de géométrie dynamique permettant aussi de chercher une construction possible.

Pour terminer la séance, un bilan est distribué qui reprend et corrige  les principales erreurs ou approximations vus dans les productions des élèves. Une place libre avait été prévue mais n’a pas été utilisée.

Les fichiers
  • Le diaporama (pdf)
  • Le bilan (pdf)

 

 

 

 

Ceci n’est pas…

Voilà une image à projeter en classe. C’est obligatoire, dès la sixième, tous les élèves doivent connaître ça !

Questionner les élèves sur cette oeuvre de Magritte, les laisser donner leur avis, s’exprimer et dire à ce qui connaissent déjà, de ne rien dévoiler.

Une pipe, on doit pouvoir y mettre du tabac dedans, l’allumer et la fumer. Ici, avec l’image projetée au tableau, impossible de bourrer la pipe, le tabac tomberait pas terre, au mieux dans la réglette du tableau blanc. Ce n’est donc pas une pipe, c’est certain. Mais alors, qu’est-ce que c’est ?  C’est peut-être, nous dit Magritte, la représentation d’une pipe ou encore, une image d’une pipe. Nuance…

Nous faisons alors le lien avec la géométrie. Ceci n’est pas une droite :

C’est une représentation d’une droite, précisément, sa représentation sous GeoGebra.

Et, ce n’est pas une question de support, ceci n’est pas une droite non plus.

insérer image d’une droite tracé à la règle sur papier blanc

C’est encore une représentation d’une droite. D’ailleurs, si l’on agrandit outrageusement le dessin à la photocopieuse, qui pourrait dire que ceci est une droite ?

insérer image d’un agrandissement

Ainsi en classe de mathématiques, nous ne travaillons, non pas sur des droites, des segments de droites ou des cercles mais sur des représentations de ces objets mathématiques. Il y a quand même une distinction que certains élèves font entre « ceci n’est pas une pipe » et « ceci n’est pas une droite ». Quand on parle de la représentation d’une pipe, on sait que l’objet existe et ce n’est bien sûr pas le cas d’une droite. Qui a déjà rencontré une droite, une vraie droite ?

Pour finir, ceci n’est pas un cercle semble dire Georges Rousse . Enfin, tout dépend du point de vue…

Calculs et unités – le comparatif

Pour faire suite à l’article sur les grandeurs, les unités et le calcul, voici une troisième situation qui montre la puissance des unités dans les calculs.

Hier soir, mon fils travaillait sur un exercice de géométrie. Je jette un œil. C’est un « classique » qui permet de montrer une utilisation concrète de la configuration croisée du théorème de Thalès. En voici la figure :

L’énoncé précise OA’ = 50 mm , AB =  12 m et OA = 25 m. Après une première question qui permet de prouver que l’on est bien dans une configuration de Thalès (le parallélisme), une deuxième question demande d’établir d’/d = A’B’/AB pour enfin, dans une troisième question déterminer la distance A’B’, taille de l’arbre sur la pellicule qui est, en passant une distance bien plus facilement mesurable que la hauteur de l’arbre. Mais le sujet n’est pas là. On voit que l’utilisation de l’égalité de la deuxième question, va poser (ou devrait poser) des problèmes d’homogénéité des unités. On a d’une part des mètres et d’autre part des millimètres.

Une première résolution consisterait à convertir toutes les distances dans une même unité, par exemple le mètre.

d’ = 50 mm = 0,05 m
d = 25 m
AB = 12 m
On obtient donc :

On conclut alors que l’image mesure 0,024 m soit 24 mm.

Une deuxième solution possible montre que ces changements d’unités ne sont pas nécessaires. En s’affranchissant entièrement des unités, on obtient les égalités suivantes :

Et puis, que faire de ce résultat sans unité ? On peut toujours lui coller des mm, cela passera sans doute mais on sent bien que derrière ce calcul, il y a un tour de passe-passe non dévoilé.

C’est la troisième solution qui dévoile ce tour. Écrivons simplement les unités dans ces calculs :

Par la « simplification par m », simplification bien connue des élèves dans le cadre numérique mais plus rarement dans le cadre des grandeurs, la distance A’B’ se voit affecter naturellement (en fait, algébriquement) son unité, le mm.

Bien sûr, on peut aussi calculer un coefficient de proportionnalité :

C’est-à-dire, une grandeur sans unité soit un nombre,  que l’on applique aux 12 m.

Et retrouver à peu de frais les 24 mm de l’image.

buy windows 11 pro test ediyorum