Calculs et unités – le comparatif

Pour faire suite à l’article sur les grandeurs, les unités et le calcul, voici une troisième situation qui montre la puissance des unités dans les calculs.

Hier soir, mon fils travaillait sur un exercice de géométrie. Je jette un œil. C’est un « classique » qui permet de montrer une utilisation concrète de la configuration croisée du théorème de Thalès. En voici la figure :

L’énoncé précise OA’ = 50 mm , AB =  12 m et OA = 25 m. Après une première question qui permet de prouver que l’on est bien dans une configuration de Thalès (le parallélisme), une deuxième question demande d’établir d’/d = A’B’/AB pour enfin, dans une troisième question déterminer la distance A’B’, taille de l’arbre sur la pellicule qui est, en passant une distance bien plus facilement mesurable que la hauteur de l’arbre. Mais le sujet n’est pas là. On voit que l’utilisation de l’égalité de la deuxième question, va poser (ou devrait poser) des problèmes d’homogénéité des unités. On a d’une part des mètres et d’autre part des millimètres.

Une première résolution consisterait à convertir toutes les distances dans une même unité, par exemple le mètre.

d’ = 50 mm = 0,05 m
d = 25 m
AB = 12 m
On obtient donc :

On conclut alors que l’image mesure 0,024 m soit 24 mm.

Une deuxième solution possible montre que ces changements d’unités ne sont pas nécessaires. En s’affranchissant entièrement des unités, on obtient les égalités suivantes :

Et puis, que faire de ce résultat sans unité ? On peut toujours lui coller des mm, cela passera sans doute mais on sent bien que derrière ce calcul, il y a un tour de passe-passe non dévoilé.

C’est la troisième solution qui dévoile ce tour. Écrivons simplement les unités dans ces calculs :

Par la « simplification par m », simplification bien connue des élèves dans le cadre numérique mais plus rarement dans le cadre des grandeurs, la distance A’B’ se voit affecter naturellement (ou même algébriquement) son unité, le mm.

Bien sûr, on peut aussi calculer un coefficient de proportionnalité :

C’est-à-dire un nombre, sans unité, que l’on applique aux 12 m.

Et retrouver à peu de frais les 24 mm de l’image.

Les grandeurs, les unités et le calcul

Au collège, les grandeurs occupent un place importante et permettent d’ancrer les mathématiques dans le quotidien sinon dans le concret.

Un débat, tranché aujourd’hui (sic), est celui de la présence ou non des unités dans les calculs. Ce n’est pas de ce débat qu’il sera question dans cet article mais de deux situations qui montrent la puissance du calcul  sur et avec les grandeurs. On peut néanmoins comparer ce qui est dit aujourd’hui dans les programmes (Bulletin officiel n° 30 du 26-7-2018) :

Mener des calculs impliquant des grandeurs mesurables, notamment des grandeurs composées, exprimer les résultats dans les unités adaptées ;

Et ce qui était dit auparavant :

Mener des calculs impliquant des grandeurs mesurables, notamment des grandeurs composées, en conservant les unités.

Et se poser la question des raisons qui ont poussé à ce minuscule changement ? Pas de réponse ici, mais plutôt deux exemples qui plaident en faveur de la conservation des unités dans les calculs.

Les situations
Situation 1 : Les volumes

On trouve fréquemment le type d’exercice suivant en classe de troisième :

Trouver la hauteur d’un cylindre ayant le même volume et le même rayon qu’un demi-sphère de rayon 9 cm.

Après avoir calculé le volume de la demi-sphère (486 cm3), on peut écrire et résoudre une équation :

 

Ainsi, après avoir posé ne équation sur des volumes, l’inconnue, c’est-à-dire la hauteur se voit naturellement associée à son unité, le cm.

Situation 2 : Hauteur d’eau

Sur le site de météo France, on trouve  la définition suivante :

Pluviomètre : Instrument météorologique destiné à mesurer la hauteur de précipitation pendant un intervalle de temps donné (en supposant uniformément répartie et non sujette à évaporation l’eau de précipitation tombée sur la surface terrestre). Cette hauteur de précipitation s’exprime en millimètres ou, de façon équivalente, en litres par mètre carré, que souvent l’on se contente d’appeler pour simplifier des litres. (Le litre, unité de capacité utilisée pour mesurer en décimètres cubes un volume de liquide ou de matière sèche, admet encore à titre provisoire deux symboles légaux : le « L » — majuscule, bien qu’il n’ait pas pour origine un nom propre — et le « l » — utilisé historiquement, mais prêtant à confusion avec le chiffre 1 ; l’unité de hauteur de précipitation s’écrit donc l/ ou L/.)

http://www.meteofrance.fr/publications/glossaire/153188-pluviometre

 

Comment démontrer l’équivalence exprimée ci-dessus en gras ? Voici une réponse possible :

D’où appellation « hauteur » pour une quantité de pluie par unité de surface. Ainsi, le calcul sur les grandeurs a aussi un pouvoir de démonstration.

A lire

http://yves.chevallard.free.fr/spip/spip/IMG/pdf/Les_grandeurs_au_college_I.pdf

A écouter

 

Heures décimales en 6ème

Voici une activité qui permet de faire travailler les élèves sur les différentes écritures des durées.

Matériel

Étiquettes à découper + consigne. Prévoir aussi des trombones.

Objectif

Comprendre et utiliser l’écriture des durées sous forme décimale.

Niveau

Fin de cycle 3 – sixème

Déroulement

Prévoir deux séances et un peu de temps pour un bilan.
Lors d’une séance précédente, en fin d’heure, nous pouvons poser, au tableau, la question de la signification de l’écriture 1,3 h. On pourra alors mettre en évidence qu’il ne s’agit ni de 1 h 3 min ni de 1 h 30 min (1,3 = 1,30 est une connaissance bien ancrée chez les élèves). Certains feront alors sans doute la remarque que 1,5 h = 1 h 30 min et que dons, 1,3 h c’est moins que 1 h 30 min… La question initiale ne devra pas être résolue, les élèves quitteront la classe avec l’idée que « ce n’est pas si simple ». On pourra tout de même évoquer que 1,3 se lit aussi 1 et 3 dixième et bien sûr que 1 h = 60 min.

Les élèves sont placés en équipe de deux de façon à favoriser les échanges rapides. Préparer et distribuer un jeu d’étiquettes mélangées pour chaque équipe, distribuer les consignes et rappeler au tableau ce qui a été fait lors de la séance précédente (1,3 h, 1 h 3 min etc). Dire qu’il faudra coller les étiquettes sur une copie double. La copie double permettant de ne pas perdre les étiquettes entre deux séances.

On pourra vérifier que chaque groupe a identifié que le jeu d’étiquettes était composé de trois types d’écriture. Les élèves les mieux organisés auront déjà constitué leurs trois tas.

La calculatrice pourra être utilisée pour accélérer les recherches et éviter les erreurs de calculs mais une simple table de 60 réalisé à l’aide d’un tableur, imprimé et distribuée pourra être une aide suffisante.

Indiquer aux élèves que, dans un premier temps, ils ne s’occuperont que des associations d’écritures, les calculs venant plus tard comme justification.

Relances / difficultés

Les élèves les plus en difficulté pourront se limiter, dans un premier temps, aux écriture heures-minutes et minutes. On pourra alors demander aux élèves le nombre de minutes dans 1 h, dans 2 h, etc de façon à trouver les premières associations. L’algorithme « nombre d’heure x 60 min = écriture en minutes » sera automatisé.

En classant les durées dans l’ordre croissant (ou décroissant), certains élèves, même s’ils ne sont pas au clair sur le sens d’une écriture décimale des heures,   réussiront néanmoins à établir toutes les associations. Les laisser faire, ils termineront rapidement, les féliciter pour leur perspicacité mais leur demander alors de justifier leurs résultats en indiquant leurs calculs.

Les relances sur les écritures décimales pourront se faire sur les écritures 1,5 h, 7,5 h, 1,25 h, etc dans un premier temps. Les demis et quarts d’heure sont connues pour certains élèves. On pourra aussi montrer qu’en doublant 1 h 30 min d’une part et 1,5 h d’autre part, on obtient bien la même durée.

Ensuite il conviendra de revenir sur le sens de l’écriture 1,3 h. C’est à dire 1 h et 3/10 h. Si les fractions d’une quantité ont été traitées avec la classe, cela sera d’autant plus aisé. C’est là le nœud de cette activité. Si l’ensemble est assez ludique (les élèves peuvent apprécier la forme, les étiquette à coller)  le discours qui accompagne ce travail doit rester rigoureux et n’avoir qu’un seul but : le sens des écritures décimales de durées.

Productions d’élèves / bilan

Voici quelques productions d’élèves qui sont classées par ordre de complexité croissante. Les premières, sans aucun calcul, permettent de valoriser le travail de tous. Elles mettent aussi en lumière le travail qui reste à accomplir.

Viennent ensuite des tentatives de calculs. Seuls les résultats apparaissent.

Ensuite des calculs plus précis apparaissent mais ils ne permettent pas encore de justifier ou de comprendre les écritures décimales.

Avec certaines productions, on pourra, revenir sur la rigueur des écritures du type 60 x 3 = 180 + 10 = 190. Ce qui est à gauche du signe « = » doit être égal à ce qui est à droite du signe « = ». Est-ce le cas ici ?

Plus rares, des productions d’élèves permettront de tirer un bilan assez complet de ce travail sur les écritures décimales.

Lors d’un bilan, après avoir passé en revue les différentes productions dont on s’attachera à montrer les aspects positifs comme les améliorations possibles, on pourra faire vérifier les égalités heures-minutes / minutes puis les égalités heures décimales / minutes en faisant écrire aux élèves les différents calculs en jeu.

Institutionnalisation / technique

Voici un résumé que l’on pourra distribuer aux élèves en toute fin d’activité.

Il est toujours intéressant de faire remarquer aux élèves que certaines questions sont encore non résolues.

Conclusion

Si cette activité a pour but de faire comprendre le sens des écritures décimales des durées, elle n’en donne pas les raisons d’être. Quelle est l’utilité de telles écritures ?  A quoi servent-elles en mathématique ? Où apparaissent-elles hors-mis dans le cours de mathématique ? Autant de questions non résolues dans cet article…