Chacun sa part : une situation de proportionnalité méconnue

 

Objectifs
  • Découvrir une situation de proportionnalité peu connue des élèves
  • Etudier la proportionnalité sous plusieurs aspects
  • Utiliser les fractions, fraction d’une quantité et pourcentage
Niveau / B.O
  • Fin de cycle 3, à distance du travail mené sur la proportionnalité
  • Pourquoi pas en cycle 4 à propos de la notion de ratio puisque le B.O y fait explicitement référence dans les compétences associées à l’étude de la proportionnalité :

Modus Operandi

Prévoir au moins une séance pour chaque situation. Un travail de groupe peut s’avérer utile. On peut aussi imaginer une présentation orale du travail produit par les groupes avec un orateur choisi au sein du groupe et les autres en soutien.

Déroulement / Relances

Un diaporama peut permettre d’introduire auprès des élèves la situation.

On précisera ce qu’est un budget commun et à quoi il sert. Par une discussion de classe habilement menée, on amènera les élèves à prendre conscience que le partage en trois parts égales ne convient pas. On en profitera pour faire oraliser les élèves :  « Chacun va récupérer des sommes différentes car au départ chacun a versé des sommes différentes ».  L’idée de cette présentation est simplement de faire comprendre les grandeurs en jeu dans le problème sans en dévoiler les pistes éventuelles de résolution. D’où le fait qu’il n’y figure pas de variable didactique fixée. Bien sur, on pourra laisser les élèves rejeter eux-même le partage en trois parts égales. Dans tous les cas, à ce stade, se garder de parler de proportionnalité, c’est une démarche de modélisation qui devra rester à la charge des élèves.
Une fois la situation clarifiée (pas de partage en trois parts égales) et les élèves en situation de recherche, on peut s’attendre à certaines difficultés. L’affaire n’est pas simple et des blocages sont à prévoir. Si certains groupes calculent naturellement la somme totale 2500 + 300 + 450 = 1000, ne pas hésiter à demander aux groupes qui n’y pensent pas, de le faire. Cette somme est un bon levier pour la compréhension de la situation. Ensuite, les élèves devront trouver rapidement la somme correspondant à Alice. On pourra relancer les élèves bloqués en demandant ce que représente la somme d’Alice par rapport à la somme totale. A ce stade, de nombreuses stratégies pourront apparaître, à condition de laisser les élèves chercher. L’usage d’un tableau pourra être conseillé pour des élèves qui n’arrivent pas à s’organiser.
La situation 2 pourra être traitée de façon identique.

Stratégies / productions D’ÉLÈVES

Elles sont nombreuses et sont même susceptibles de se croiser. En voici quelques-unes (liste non exhaustive) :

  • Pourcentages : Alice donne 25 % de la somme de départ donc
    reçoit 25% de la somme restante.
  • Fractions : Alice a versé 1/4 de la somme de départ donc elle reçoit 1/4 en retour.
  • Coefficient de proportionnalité : Il vaut 155/1000 = 0,155. S’il apparaîtra assez rarement dans les travaux d’élèves, il s’avère néanmoins terriblement efficace. Son usage pourra être montré dans un bilan final.
  • Une fois la somme d’Alice trouvée, des arguments de proportionnalité (voir plus loin, « un peu de mathématiques« ) pourront être utilisés pour Bertrand et Chloé : Si Alice perçoit 38,75 € en ayant versé au départ 250 elle aurait perçu 7,75 € si elle avait versé 50 € (5 fois moins) et donc, Bertrand percevra 6 fois plus. . .
    D’autres élèves remarqueront peut-être que Bertrand a versé 1,2 fois plus qu’Alice et qu’il percevra de même 1,2 fois plus. On pourra faire le lien entre les écritures 6/5, 1 + 1/5 et 1,2.

Dans tous les cas, la diversité des techniques de résolution permettra de faire
un point assez complet sur la notion de proportionnalité mais aussi sur les écritures fractionnaires et les fractions d’une grandeur.
Enfin, on pourra faire remarquer aux élèves qui trouvent la somme de Chloé par différence, que c’est astucieux mais qu’ils perdront une occasion simple de vérifier leurs trois sommes.

Variables didactiques

Pour la situation 1, les données sont choisies de façon à obtenir des résultats au centime près en valeurs exactes. Un travail spécifique peut être entrepris dans la situation 2 pour rechercher un partage au centime près « le plus juste possible ». Dans les deux situations, les enjeux ne sont donc pas tout à fait les mêmes. La situation 1 est davantage axée sur la méthode de résolution et la situation 2 est davantage axée sur la recherche de précision.

  • Un coefficient de proportionnalité arrondi (0,29 ou même 0,299) ne
    donne pas de bons résultats :
    0,29 x 6800 € + 0,29 x 5200 € + 0,29 x 3700 € = 4694,30 € et non pas 4700 €. Certains élèves se poseront alors la question du partage des 5,70 € restant entre les trois amis.
  • La méthode qui consiste à utiliser un pourcentage donne de
    moins bons résultats.
  • Il pourra donc être utile de chercher un coefficient fractionnaire
  • Une simple troncature  au centième des trois résultats calculés à l’aide de fractions donne une somme totale égale à 4699,98 €, inférieure de 2 centimes à 4700 € ! On profitera de cette occasion pour rappeler comment arrondir un résultat au centième près.
Un peu de mathématiques
  • Les sommes d’argent récupérées par les trois amis sont dans le ratio des sommes versées, c’est à dire,  250 : 300 : 450 (ou encore 25 : 30 : 45 ou même 5 : 6 : 9). Cela signifie que si a, b et c sont les sommes récupérées par Alice, Bertrand et Chloé, on a a / 250 = b / 300 = c / 450 et donc, en utilisant un argument de proportionnalité, a / 250 = b / 300 = c / 450 = ( a + b + c ) / (250 + 300 +450)  soit, puisque dans notre cas a + b + c = 155 a / 250 = b / 300 = c / 450 = 155 / 1000. On en déduit alors facilement a, b et c.
    Un théorème de calcul algébrique permet d’étayer l’argument de proportionnalité. En effet si a = b alors on a aussi,
    a = b = ( x + y ) / ( a + b )
    En effet si a = b alors il existe un nombre k tel que x = k . a et y = k . b. On a donc ,
    ( x + y
    ) / ( a + b ) = ( k . ak . b ) /  ( a + b )  = k = a = b
    CQFD.
    Ce théorème permet alors d’écrire, dans la situation d’Alice, Bertrand et Chloé, l’égalité surprenante :
    a / 5 = b / 6 = c / 9 = (a + b + c ) / (5 + 6 + 9 ) = 155  / 20
    On retrouve ce qui sous-tend les productions d’élèves citées plus haut, celles qui utilisent des arguments de proportionnalité.
  • Les partages selon un ratio données font parties d’exercices « classiques ». On en retrouve par exemple ici (exercices 15 à 18) : http://www.math.univ-angers.fr/~labatte/institut/Exprop.pdf
  • Le site de Serge Mehl consacre un article assez complet sur la proportionnalité, on y trouve peut-être une origine à la notation a : b : c http://serge.mehl.free.fr/anx/proportionnalite.html
Fichiers utiles

Enoncé.pdf
Presentation.pdf

Un peu de musique pour terminer

Et puisqu’on parle de partage…

Une figure mystère ou comment une homothétie permet de construire un carré inscrit dans un triangle ?

Objectif

Découvrir l’homothétie en deux séances

ÉNONCÉ

Niveau

Fin de cycle 4, 3ème

Pré-requis
  • Avoir déjà utilisé GeoGebra
  • Avoir déjà étudié un même type de tâche (inscrire une figure dans une autre), par exemple :

  • De même, avoir déjà travaillé une question d’agrandissement, par exemple :
Déroulement

Commencer par montrer une figure dynamique sous GeoGebra afin de faire comprendre à la classe qu’il ne s’agit pas de reproduire une figure (statique) particulière mais que la construction doit pouvoir fonctionner sur tous les triangles possibles.
Dire aux élèves qu’ils vont devoir comprendre comment est construit le carré inscrit dans le triangle et qu’une fois la construction établie, ils pourront la réaliser sous GeoGebra.
Distribuer l’énoncé et mettre les élèves au travail : papier/crayon. Cette étape est importante, les élèves doivent prendre conscience de la difficulté de la construction. Comment faire en sorte que deux sommets soient sur deux côtés du triangle et que les deux autres sommets soient sur le même troisième côté ? On pourra distribuer des « figures pour comprendre ». Ce sont des figures déjà réalisées sur lesquelles les élèves peuvent effectuer des tracés, repérer des alignements, mesurer, bref explorer.

Relances / difficultés

Les élèves vont produire des figures qu’ils ont réalisés à tâtons. En montrer une à la classe via un vidéoprojecteur. Elle pourra sembler justes à certains et une discussion de classe permettra de l’invalider après en avoir aussi montré les aspects positifs.  Il faudra alors relancer la classe pour la faire sortir de cette situation de blocage.
Une relance importante consiste à abaisser une contrainte :

Construire un carré avec un sommet intérieur au triangle Construire un carré avec un côté parallèle à un côté du triangle
 

Une fois la contrainte abaissée, la figure est relativement simple à construire. Questionner alors les élèves sur la taille du carré ainsi construit. Le carré solution est un agrandissement du « petit » carré, comment le construire ? Peut-on construire des carrés de plus en plus grand ?  Le carré pouvant même dépasser le carré solution. Une fois plusieurs carrés construits, peut-on trouver des alignements (sommets des carrés) ? Ces relances ont pour but d’obtenir des carrés homothétiques afin d’obtenir un sommet du carré solution :

Une fois la construction réalisée par tous, lors d’une deuxième séance, passer sous GeoGebra. On pourra limiter les outils avec une version de GeoGebra « allégée » :

Institutionnalisation

Voici un bilan possible qui montre les aspects dynamiques de l’homothétie qui devient un outil pour construire.

Prolongements
  • Lors de la séance sous GeoGebra, vérifier que la construction fonctionne dans tous les cas (lorsqu’un des angles de la « base » est obtus). Si ce n’est pas le cas demander de corriger, il faudra alors considérer les droites qui supportent les côtés du triangle et non pas seulement les segments.
  • Proposer de construire des carrés inscrits à l’infini (dans les trois triangles restants) ou de construire les trois cercles inscrits dans les trois triangles restants (Sangaku) :
    Conclusion

Il restera à faire le lien avec le théorème de Thalès, en effet, cette tâche ne prend pas en compte le rapport de l’homothétie.

Fichiers utiles

EnoncéFigureMystere.pdf

BilanFigureMystere.pdf

FigurePourComprendre.pdf