Sikra – Des travaux d’élèves au bilan

La restitution d’un travail de groupe est souvent un point délicat et donc souvent négligé. Voici ce que je propose autour de la ressource dont j’ai déjà parlé ici, Sikra. Ainsi, dans un premier temps les élèves ont analysé les dessins géométriques, ils les ont codé lors d’une travail individuel et même testé à l’aide d’un logiciel de géométrie dynamique. Ensuite par groupe de trois ils ont cherché des programmes de construction des cinq premiers motifs. Il avait à disposition, leurs figures codées et un lexique des programmes de construction.

Le déroulement

Après avoir récupéré les travaux, vient le moment de les classer et d’en sélectionner quelques-uns – inutile de tous les montrer – de façon à en tirer un bilan pertinent pour les élèves. Un diaporama est alors projeté et c’est aux élèves de « critiquer » les productions projetées. Mais attention, critiquer c’est d’abord dire une chose positive sur le travail exposé à tous. C’est important de commencer par une chose positive, le penchant naturel de la classe pousse souvent à dire ce qui ne va pas…

Voici les travaux choisis et ce que l’on peut en dire.

Les élèves ont un peu de mal à tirer quelque chose de positif de ce premier travail. Mais tout de même, le programme « marche », ça fonctionne, on comprends et c’est bien là le principal. Ensuite on note un effort de vocabulaire. Il faut insister de façon à valoriser ce travail qui est loin d’être inintéressant malgré son apparence pauvre. Ensuite, viennent les « critiques ». Comment peut-on améliorer ce travail ? L’écriture, la construction de phrase. Oui. Et mathématiquement ? Les notations bien entendu. Nous passons rapidement à la suite.

Le contraste est flagrant. Les compliments pleuvent. Et pourtant les mêmes soucis de notations apparaissent.

Enfin, nous terminons sur une production qui permet de se faire une idée de ce que l’on attend. Cette production fera office de corrigé.

Nous passons au deuxième motif.

La lecture est difficile et nous en profitons pour dire aux élèves qu’il est important, non pas d’avoir une belle écriture mais une écriture parfaitement lisible. La plupart des élèves ne voit aucune amélioration possible pour ce programme. En effet, pour beaucoup d’élèves, « entre A et B » est synonyme de « milieu ». Alors nous disons qu’en mathématiques, il faut être précis et que chaque mot est important. Nous montrons le travail suivant qui est remarquable à plusieurs égards.

D’abord, les points E, F, G et H n’ont pas été définis. Un oubli sans doute… Et puis il y a cette mention des quatre angles droits au sujet du carré ABCD. A-t-on déjà vu un carré qui n’a pas ses quatre angles droits ? Il y a là une intrusion du descriptif, nécessaire lors de l’analyse du dessin et qui n’a pas sa place dans le programme de construction. Et puis il y a cette dernière phrase : tracer les segments EFGH. Les élèves ne sont pas gênés par cette tournure et nous les suivons en disant qu’il s’agit surtout d’une maladresse pour dire « le carré EFGH ».

Nous montrons ensuite une dernière production suffisamment élaborée qui permet de conclure sur ce motif. Pour la suite, nous allons parler du cercle avec le troisième motif.

Ce que nous voulons pointer avec ce travail c’est la différence entre le lexique du matériel de géométrie et le lexique de la géométrie. Nous prenons comme exemple l’utilisation de GeoGebra car les élèves y ont déjà testé leurs figures lors d’une précédente séance. Sous GeoGebra, il n’y a pas de pointe de compas alors comment faire ? Nous faisons appel à la classe et certains élèves parlent de centre et de rayon. Nous validons et passons à la suite.

Bien sûr, les élèves n’ont pas oublié les critiques sur les notations. Nous nous arrêtons sur « le cercle qui devra toucher le milieu du carré ». Nous expliquons qu’il s’agit sans doute « du milieu du côté du carré » mais que l’expression du fait que le cercle est tangent au côté du carré est améliorable. Comment ? En montrant la dernière production.

Nous voulons enfin terminer par une production qui relance les élèves Avant d’écrire un programme de construction il faut bien analyser le dessin afin d’en comprendre une possible construction. Nous questionnons alors les élèves sur la pertinence de la mesure 3 mm pour s’accorder à dire qu’il faut retourner à l’analyse du motif.

Il s’agit d’ailleurs plus d’un va-et-vient entre la rédaction du programme et sa mise à l’épreuve sous GeoGebra, le logiciel de géométrie dynamique permettant aussi de chercher une construction possible.

Pour terminer la séance, un bilan est distribué qui reprend et corrige  les principales erreurs ou approximations vus dans les productions des élèves. Une place libre avait été prévue mais n’a pas été utilisée.

Les fichiers
  • Le diaporama (pdf)
  • Le bilan (pdf)

 

 

 

 

Ceci n’est pas…

Voilà une image à projeter en classe. C’est obligatoire, dès la sixième, tous les élèves doivent connaître ça !

Questionner les élèves sur cette oeuvre de Magritte, les laisser donner leur avis, s’exprimer et dire à ce qui connaissent déjà, de ne rien dévoiler.

Une pipe, on doit pouvoir y mettre du tabac dedans, l’allumer et la fumer. Ici, avec l’image projetée au tableau, impossible de bourrer la pipe, le tabac tomberait pas terre, au mieux dans la réglette du tableau blanc. Ce n’est donc pas une pipe, c’est certain. Mais alors, qu’est-ce que c’est ?  C’est peut-être, nous dit Magritte, la représentation d’une pipe ou encore, une image d’une pipe. Nuance…

Nous faisons alors le lien avec la géométrie. Ceci n’est pas une droite :

C’est une représentation d’une droite, précisément, sa représentation sous GeoGebra.

Et, ce n’est pas une question de support, ceci n’est pas une droite non plus.

insérer image d’une droite tracé à la règle sur papier blanc

C’est encore une représentation d’une droite. D’ailleurs, si l’on agrandit outrageusement le dessin à la photocopieuse, qui pourrait dire que ceci est une droite ?

insérer image d’un agrandissement

Ainsi en classe de mathématiques, nous ne travaillons, non pas sur des droites, des segments de droites ou des cercles mais sur des représentations de ces objets mathématiques. Il y a quand même une distinction que certains élèves font entre « ceci n’est pas une pipe » et « ceci n’est pas une droite ». Quand on parle de la représentation d’une pipe, on sait que l’objet existe et ce n’est bien sûr pas le cas d’une droite. Qui a déjà rencontré une droite, une vraie droite ?

Pour finir, ceci n’est pas un cercle semble dire Georges Rousse . Enfin, tout dépend du point de vue…

SIKRA, de l’analyse d’un dessin à la construction d’une figure

Victor Vasarely, de son vrai nom Vásárhelyi Gy?z? (Pécs, 9 avril 1906 – Paris, 15 mars 1997), est le plasticien hongrois reconnu comme étant le père de l’art optique ou Op art. Ses œuvres sont autant d’occasions de faire de la géométrie au collège.

Niveau

Fin de cycle 3, sixième

Pré-requis
  • Avoir déjà analysé une figure dans le but de comprendre comment elle peut être construite (nommer, coder, mesurer, etc)
  • Avoir déjà manipulé un logiciel de géométrie dynamique (GeoGebra). Voir par exemple : Geogebra-en-6eme-premiere-utilisation
Objectifs / B.0
  • Comprendre le passage du dessin à la figure ou, comme le dit explicitement le B.O, dans les compétences travaillées :

    (…) passer progressivement de la perception au contrôle par les instruments pour amorcer des raisonnements s’appuyant uniquement sur des propriétés des figures et sur des relations entre objets ;

  • Réaliser un programme de construction
  • Établir un petit raisonnement (pour le motif 6, défi)
  • Croiser les enseignements de Mathématiques et d’Arts Plastiques, comme le précise le B.O :

    Les activités de reconnaissance et de construction de figures et d’objets géométriques peuvent s’appuyer sur des réalisations artistiques (peinture, sculpture, architecture, photographie, etc.).

Déroulement
  • Commencer par présenter l’oeuvre (et l’artiste) à l’aide d’un vidéo-projecteur. Faire commenter cette oeuvre par la classe. Le but est de faire le lien avec la géométrie. Distribuer ensuite les énoncés. Préciser que les deux derniers motifs sont des défis. En effet, leur construction rigoureuse reste très difficile pour des élèves de sixième. Dire que nous allons devoir comprendre comment ont été construits ces motifs pour pouvoir, à notre tour, les reproduire.
  • Mettre ensuite les élèves en situation de recherche, ils devront, à l’aide de leurs instruments de géométrie, prendre des informations sur les dessins fournis. On veillera alors à ce que les points soient nommés, les dessins codés, des traits représentants des alignements tracés, etc.
    Figures n°1 et 2 : les figures sont simples et à la portée de tous.
    Figure n°3 : les élèves devront trouver comment obtenir le centre du cercle ainsi que son rayon. Le milieu du côté comme point de contact du cercle avec le carré fait partie du domaine de la figure géométrique construite. Certains élèves, restant dans le domaine de la perception,  tenteront simplement de faire « toucher » le cercle. Cette question prendra tout son sens lors du passage à la géométrie dynamique, sous GeoGebra. On pourra alors zoomer sur un point « douteux » :

    Figure n°4 : une analyse trop peu précise du dessin mènera certains élèves à prendre comme rayon le quart du côté du carré au lieu du quart de sa diagonale.
    Figure n°5 : une construction approximative peut être acceptée.
    Figure n°6 : certains élèves vont proposer la construction suivante basée sur des milieux :

    Il conviendra, dans un premier temps, de valider cette construction. On pourra néanmoins questionner les élèves sur la nature du triangle obtenu. Leur réponse est unanime, il est équilatéral. Cette affirmation sera mise en défaut sous GeoGebra mais dans un second temps.
    Figure n°7 : Elle reste très difficile et peut n’être proposée qu’en « super défi » comme une façon de montrer aux élèves qu’il reste du chemin à parcourir et que, souvent, en mathématiques, certains problèmes restent partiellement résolus.

  • Dans un second temps, on pourra demander aux élèves de rédiger des programmes de construction correspondants à leurs analyses. On pourra distribuer des fiches à compléter qui pourront être bien pratique pour les  scanner et projeter. Dans ce travail, une attention particulière sera portée sur le vocabulaire utilisé. On pourra alors distribuer un « lexique » des programmes de constructions.
    Voici quelques productions d’élèves qui montrent, au travers du vocabulaire utilisé, le passage de la géométrie perceptive à la géométrie construite (cliquer pour agrandir) :

  • Dans un troisième temps (ou indépendamment de la rédaction des programmes de construction, voire même en faisant des aller-retours entre les deux tâches),  les élèves pourront réaliser leurs constructions sous GeoGebra. On pourra utiliser une version allégée du logiciel avec seulement les menus nécessaires.
    Ce sera alors l’occasion de revenir sur le motif n°6 en utilisant l’outil Distance ou Longueur :

    On relancera les élèves en leur demandant de comparer la mesure du côté du carré et celle du triangle à construire.
  • Pour finir, un bilan sur le motif n°6 permettra à tous d’avoir accès à une construction du triangle équilatéral. Une attention particulière sera lors portée davantage sur le vocabulaire que sur la recherche de la construction. En défi, on pourra proposer d’expliquer comment on peut être certain que le triangle obtenu est équilatéral. ce sera alors l’occasion de revenir sur la définition du cercle.
Prolongements
  • On pourra demander aux élèves, ou à un groupe d’élèves, de se charger de réaliser l’oeuvre toute entière sous GeoGebra.
  • Il existe d’autres œuvres susceptibles d’être travaillées dans le cours de mathématiques. Citons, par exemple Theo van Doesburg avec Arithmetic Composition, très intéressante pour construire des figures « à l’infini » :
Fichiers utiles

Énoncé_analyse.pdf
Énoncé_programme.pdf
Le_sixième_motif.pdf
Bilans_possibles.pdf
Affiche_Sikra_A3.pdf

références / liens
  • A propos de l’analyse de figures géométriques et de la distinction entre dessin géométrique et figure géométrique, il faut citer l’excellent ouvrage de Jean-Philippe Rouquès et Hélène Staïner :  « Des maths Ensemble et Pour Chacun – 6ème » édité par le CRDP des Pays de Loire.
  • Le site de la fondation Vasarely à Aix-en Provence.
  • L’IREM de Paris-Nord propose une série d’activités basée sur la tortue Logo (celle des 80’s) qui peuvent sans doute être adaptées au dessin sous Scratch.
  • Le Petit vert n°132 de l’APMEP région Lorraine, page 37 à 45, propose  un dossier Maths & Arts en classe de sixième assez complet.
Pour finir

La Hongrie, pays d’origine de Vasarely est liée à un bon nombre de célébrités. C’est la remarque que nous nous sommes faîtes mon épouse et moi même en visitant Budapest, il y a quelques jours. Citons, pour la photo, Robert Capa, pour la musique, Franz (Ferenc)  Liszt et Béla Bartók, pour les mathématiques,  Imre Lakatos et son formidable Preuves et Réfutations : essai sur la logique de la découverte mathématique, Paris, Éditions Hermann, 1984, et peut-être Ern? Rubik et son invention infernale des 80’s et puis puisqu’une exposition a lieu actuellement à Budapest sur cette artiste, Frida Kahlo par son père d’origine germano-austro-hongroise !

buy windows 11 pro test ediyorum