Calculs et unités – le comparatif

Pour faire suite à l’article sur les grandeurs, les unités et le calcul, voici une troisième situation qui montre la puissance des unités dans les calculs.

Hier soir, mon fils travaillait sur un exercice de géométrie. Je jette un œil. C’est un « classique » qui permet de montrer une utilisation concrète de la configuration croisée du théorème de Thalès. En voici la figure :

L’énoncé précise OA’ = 50 mm , AB =  12 m et OA = 25 m. Après une première question qui permet de prouver que l’on est bien dans une configuration de Thalès (le parallélisme), une deuxième question demande d’établir d’/d = A’B’/AB pour enfin, dans une troisième question déterminer la distance A’B’, taille de l’arbre sur la pellicule qui est, en passant une distance bien plus facilement mesurable que la hauteur de l’arbre. Mais le sujet n’est pas là. On voit que l’utilisation de l’égalité de la deuxième question, va poser (ou devrait poser) des problèmes d’homogénéité des unités. On a d’une part des mètres et d’autre part des millimètres.

Une première résolution consisterait à convertir toutes les distances dans une même unité, par exemple le mètre.

d’ = 50 mm = 0,05 m
d = 25 m
AB = 12 m
On obtient donc :

On conclut alors que l’image mesure 0,024 m soit 24 mm.

Une deuxième solution possible montre que ces changements d’unités ne sont pas nécessaires. En s’affranchissant entièrement des unités, on obtient les égalités suivantes :

Et puis, que faire de ce résultat sans unité ? On peut toujours lui coller des mm, cela passera sans doute mais on sent bien que derrière ce calcul, il y a un tour de passe-passe non dévoilé.

C’est la troisième solution qui dévoile ce tour. Écrivons simplement les unités dans ces calculs :

Par la « simplification par m », simplification bien connue des élèves dans le cadre numérique mais plus rarement dans le cadre des grandeurs, la distance A’B’ se voit affecter naturellement (en fait, algébriquement) son unité, le mm.

Bien sûr, on peut aussi calculer un coefficient de proportionnalité :

C’est-à-dire, une grandeur sans unité soit un nombre,  que l’on applique aux 12 m.

Et retrouver à peu de frais les 24 mm de l’image.

Chacun sa part : une situation de proportionnalité méconnue

 

Objectifs
  • Découvrir une situation de proportionnalité peu connue des élèves
  • Etudier la proportionnalité sous plusieurs aspects
  • Utiliser les fractions, fraction d’une quantité et pourcentage
Niveau / B.O
  • Fin de cycle 3, à distance du travail mené sur la proportionnalité
  • Pourquoi pas en cycle 4 à propos de la notion de ratio puisque le B.O y fait explicitement référence dans les compétences associées à l’étude de la proportionnalité :

Modus Operandi

Prévoir au moins une séance pour chaque situation. Un travail de groupe peut s’avérer utile. On peut aussi imaginer une présentation orale du travail produit par les groupes avec un orateur choisi au sein du groupe et les autres en soutien.

Déroulement / Relances

Un diaporama peut permettre d’introduire auprès des élèves la situation.

On précisera ce qu’est un budget commun et à quoi il sert. Par une discussion de classe habilement menée, on amènera les élèves à prendre conscience que le partage en trois parts égales ne convient pas. On en profitera pour faire oraliser les élèves :  « Chacun va récupérer des sommes différentes car au départ chacun a versé des sommes différentes ».  L’idée de cette présentation est simplement de faire comprendre les grandeurs en jeu dans le problème sans en dévoiler les pistes éventuelles de résolution. D’où le fait qu’il n’y figure pas de variable didactique fixée. Bien sur, on pourra laisser les élèves rejeter eux-même le partage en trois parts égales. Dans tous les cas, à ce stade, se garder de parler de proportionnalité, c’est une démarche de modélisation qui devra rester à la charge des élèves.
Une fois la situation clarifiée (pas de partage en trois parts égales) et les élèves en situation de recherche, on peut s’attendre à certaines difficultés. L’affaire n’est pas simple et des blocages sont à prévoir. Si certains groupes calculent naturellement la somme totale 2500 + 300 + 450 = 1000, ne pas hésiter à demander aux groupes qui n’y pensent pas, de le faire. Cette somme est un bon levier pour la compréhension de la situation. Ensuite, les élèves devront trouver rapidement la somme correspondant à Alice. On pourra relancer les élèves bloqués en demandant ce que représente la somme d’Alice par rapport à la somme totale. A ce stade, de nombreuses stratégies pourront apparaître, à condition de laisser les élèves chercher. L’usage d’un tableau pourra être conseillé pour des élèves qui n’arrivent pas à s’organiser.
La situation 2 pourra être traitée de façon identique.

Stratégies / productions D’ÉLÈVES

Elles sont nombreuses et sont même susceptibles de se croiser. En voici quelques-unes (liste non exhaustive) :

  • Pourcentages : Alice donne 25 % de la somme de départ donc
    reçoit 25% de la somme restante.
  • Fractions : Alice a versé 1/4 de la somme de départ donc elle reçoit 1/4 en retour.
  • Coefficient de proportionnalité : Il vaut 155/1000 = 0,155. S’il apparaîtra assez rarement dans les travaux d’élèves, il s’avère néanmoins terriblement efficace. Son usage pourra être montré dans un bilan final.
  • Une fois la somme d’Alice trouvée, des arguments de proportionnalité (voir plus loin, « un peu de mathématiques« ) pourront être utilisés pour Bertrand et Chloé : Si Alice perçoit 38,75 € en ayant versé au départ 250 elle aurait perçu 7,75 € si elle avait versé 50 € (5 fois moins) et donc, Bertrand percevra 6 fois plus. . .
    D’autres élèves remarqueront peut-être que Bertrand a versé 1,2 fois plus qu’Alice et qu’il percevra de même 1,2 fois plus. On pourra faire le lien entre les écritures 6/5, 1 + 1/5 et 1,2.

Dans tous les cas, la diversité des techniques de résolution permettra de faire
un point assez complet sur la notion de proportionnalité mais aussi sur les écritures fractionnaires et les fractions d’une grandeur.
Enfin, on pourra faire remarquer aux élèves qui trouvent la somme de Chloé par différence, que c’est astucieux mais qu’ils perdront une occasion simple de vérifier leurs trois sommes.

Variables didactiques

Pour la situation 1, les données sont choisies de façon à obtenir des résultats au centime près en valeurs exactes. Un travail spécifique peut être entrepris dans la situation 2 pour rechercher un partage au centime près « le plus juste possible ». Dans les deux situations, les enjeux ne sont donc pas tout à fait les mêmes. La situation 1 est davantage axée sur la méthode de résolution et la situation 2 est davantage axée sur la recherche de précision.

  • Un coefficient de proportionnalité arrondi (0,29 ou même 0,299) ne
    donne pas de bons résultats :
    0,29 x 6800 € + 0,29 x 5200 € + 0,29 x 3700 € = 4694,30 € et non pas 4700 €. Certains élèves se poseront alors la question du partage des 5,70 € restant entre les trois amis.
  • La méthode qui consiste à utiliser un pourcentage donne de
    moins bons résultats.
  • Il pourra donc être utile de chercher un coefficient fractionnaire
  • Une simple troncature  au centième des trois résultats calculés à l’aide de fractions donne une somme totale égale à 4699,98 €, inférieure de 2 centimes à 4700 € ! On profitera de cette occasion pour rappeler comment arrondir un résultat au centième près.
Un peu de mathématiques
  • Les sommes d’argent récupérées par les trois amis sont dans le ratio des sommes versées, c’est à dire,  250 : 300 : 450 (ou encore 25 : 30 : 45 ou même 5 : 6 : 9). Cela signifie que si a, b et c sont les sommes récupérées par Alice, Bertrand et Chloé, on a a / 250 = b / 300 = c / 450 et donc, en utilisant un argument de proportionnalité, a / 250 = b / 300 = c / 450 = ( a + b + c ) / (250 + 300 +450)  soit, puisque dans notre cas a + b + c = 155 a / 250 = b / 300 = c / 450 = 155 / 1000. On en déduit alors facilement a, b et c.
    Un théorème de calcul algébrique permet d’étayer l’argument de proportionnalité. En effet si a = b alors on a aussi,
    a = b = ( x + y ) / ( a + b )
    En effet si a = b alors il existe un nombre k tel que x = k . a et y = k . b. On a donc ,
    ( x + y
    ) / ( a + b ) = ( k . ak . b ) /  ( a + b )  = k = a = b
    CQFD.
    Ce théorème permet alors d’écrire, dans la situation d’Alice, Bertrand et Chloé, l’égalité surprenante :
    a / 5 = b / 6 = c / 9 = (a + b + c ) / (5 + 6 + 9 ) = 155  / 20
    On retrouve ce qui sous-tend les productions d’élèves citées plus haut, celles qui utilisent des arguments de proportionnalité.
  • Les partages selon un ratio données font parties d’exercices « classiques ». On en retrouve par exemple ici (exercices 15 à 18) : http://www.math.univ-angers.fr/~labatte/institut/Exprop.pdf
  • Le site de Serge Mehl consacre un article assez complet sur la proportionnalité, on y trouve peut-être une origine à la notation a : b : c http://serge.mehl.free.fr/anx/proportionnalite.html
Fichiers utiles

Enoncé.pdf
Presentation.pdf

Un peu de musique pour terminer

Et puisqu’on parle de partage…

buy windows 11 pro test ediyorum