GEOMETRIE	Trigonométrie – les radians
-----------	-----------------------------

Compétences	
Savoir calculer une longueur ou un angle en utilisant la trigonométrie dans un triangle rectangle	
Savoir convertir des angles (degré - radians)	Application 1
Savoir déterminer la mesure principale d'un angle	Application 2
Connaitre les propriétés du sinus et du cosinus	Application 3
Savoir placer un point sur un cercle trigonométrique en utilisant les angles associés	Application 4

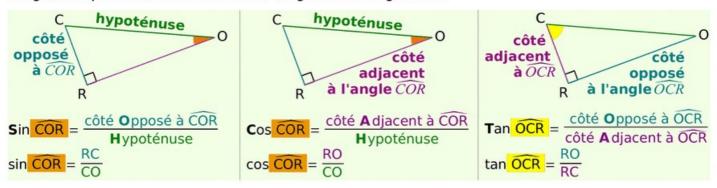
I Retour sur la trigonométrie du collège :

Définitions Dans un triangle rectangle,

le sinus d'un angle aigu est le quotient de la longueur du côté opposé à cet angle par la longueur de l'hypoténuse.

le cosinus d'un angle aigu est le quotient de la longueur du côté adjacent à cet angle par la longueur de l'hypoténuse. la tangente d'un angle aigu est le quotient de la longueur du côté opposé à cet angle par la longueur du côté adjacent à cet angle.

Exemple : Le triangle COR est rectangle en R. Écris les formules donnant le sinus et le cosinus de l'angle COR puis la formule donnant la tangente de l'angle OCR.



Remarques:

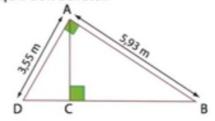
- Le cosinus et le sinus d'un angle aigu sont toujours compris entre 0 et 1.
- · La tangente d'un angle aigu est un nombre strictement positif.

Pour revoir tout le cours de trigonométrie du collège en vidéo : ici

Un exercice à maitriser :

pour voir sa correction : ici

M. Moreira veut construire un cabanon dans son jardin. Il voudrait connaître la longueur AC des tasseaux de bois qu'il doit acheter.



- Déterminer un arrondi au centième de degré près de l'angle ABC.
- En déduire un arrondi au centimètre près de la longueur AC.

II Principe de l'enroulement :

Définition: On considère un repère du plan (O, I, J)

On appelle cercle trigonométrique tout cercle de centre O et de rayon 1 sur lequel on fixe un sens de parcours anti-horaire appelé sens trigonométrique ou sens direct.

C est le cercle trigonométrique de centre O et de rayon 1

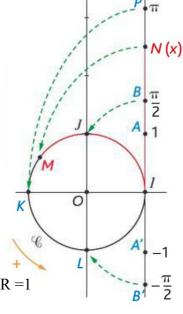
On trace la tangente d en I au cercle C

On munit d d'un repère (I,A) avec IA = IO = 1

Cette droite d graduée représente les nombres réels.

Propriété :

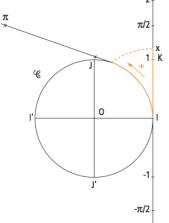
- On associe à tout réel x abscisse du point N, un unique point M du cercle trigonométrique.
- Mais attention : au point M sont associés une infinité de réels x; $x+2\pi$; $x-2\pi$; $x+4\pi$; $x-4\pi$.



π. 3.

 \underline{Rappel} : le périmètre d'un cercle est $2\pi\,R$ soit 2π puisque R=1

L'arc IJ mesure; l'arc II' mesure; l'arc JJ' mesure



Compléter le tableau suivant :

Graduation	-2π	-π	$\frac{-\pi}{2}$	$\frac{\pi}{2}$	π	2π	3π	4π	5π	6π	7π	8π
Point												

A tout réel x est associé le point M du Cercle et au point M sont associés une infinité de réels x; $x+2\pi$; $x-2\pi$; $x-4\pi$; $x-4\pi$; $x-4\pi$

Remarque : la mesure de l'arc IM est appelée mesure de l'angle IOM en radian

III Mesure d'un angle en radian :

Définition:

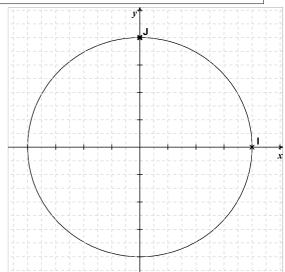
- Un angle de 1 radian, noté 1 rad, est un angle interceptant, sur un cercle, un arc de longueur égale au rayon du cercle.
- Autrement dit : Sur le cercle trigonométrique, la mesure en radian d'un angle correspond à la longueur de l'arc intercepté par cet angle.

Application 1 : Convertir des angles en degré en radians :

Tableau de conversion : tableau proportionnel

<u> rabica</u>	u uc c	UIIVCI	31011 .	tabica	u pro	<i>J</i> 01 (101	<u> </u>			
radian	0	2π								
degré	0	360	30	45	60	90	120	135	150	180

Sur le cercle trigonométrique, placer les points correspondants aux angles précédents.



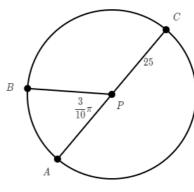
www.lewebpedagogique.com/mvallelian

Application: Calcul de la longueur d'un arc de cercle:

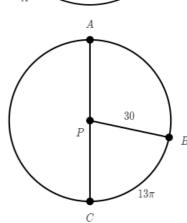
Exemple 1 : [AC] est un diamètre du cercle de centre P et PC = 25.

Quelle est la longueur du petit arc AB?

Quelle est la longueur du petit arc BC?



Exemple 2 : [AC] est un diamètre du cercle de centre P et de rayon 30. La longueur du petit arc BC est égal à 13π . Quelle est la mesure en radian de l'angle \widehat{APB} ?



2. Mesure principale d'un angle en radian :

<u>Définition - propriété :</u>

• Un angle possède en radians, une infinité de mesures distantes de 2 π (= périmètre du cercle)

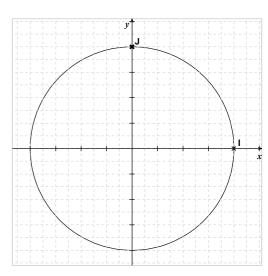
Ainsi $\frac{\pi}{4}$ et $\frac{17\pi}{4}$ (= $\frac{16\pi}{4}$ + $\frac{\pi}{4}$ = 4π + $\frac{\pi}{4}$) représente deux mesures du même angle en radians.

- Un angle aura une mesure négative en radian lorsque le sens de parcours sur le cercle se fait dans le sens contraire du sens trigonométrique.
- La mesure principale d'un angle est sa mesure en radians dans l'intervalle] π ; π].

Application 2 : Déterminer la mesure principale d'un angle donné :

Donner la mesure principale des angles de mesures respectives : $\frac{37\pi}{6}$;

 $\frac{29\pi}{4}$; $\frac{-25\pi}{3}$ et $\frac{-15\pi}{12}$ puis les placer sur le cercle trigonométrique.



IV. Cercle trigonométrique et repérage :

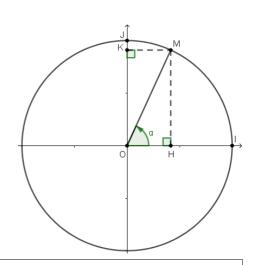
On considère un repère (O;I;J) et le cercle de centre O passant par I.

Soit M(x; y) un point du cercle, on a alors $OH = \dots$ et $OK = \dots$

Dans le triangle OMH rectangle en H, on a :

$$\cos \alpha = \dots$$
 or $OM = \dots$ donc $\cos \alpha = \dots$.

$$\sin \alpha = \dots$$
 or OM = et HM = OK donc $\sin \alpha = \dots$.



Bilan: On considère un repère du plan (O, I, J)

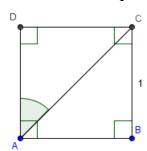
On appelle cercle trigonométrique tout cercle de centre O et de rayon 1 sur lequel on fixe un sens de parcours anti-horaire appelé sens trigonométrique ou sens direct.

Pour tout point M(x; y) appartenant au cercle trigonométrique, en notant $\alpha = \widehat{IOM}$:

$$x = \dots$$

y =.....

Détermination de quelques mesures de référence :



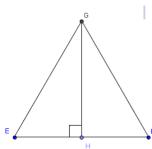
On considère un carré ABCD de côté 1.

Dans le triangle ADC rectangle en D, on a :

$$\cos \widehat{DAC} = \dots = \dots = \dots$$
 donc

$$\widehat{\text{sin }\widehat{DAC}} = \dots = \dots = \text{donc}$$

On considère un triangle équilatéral EFG de côté 1.

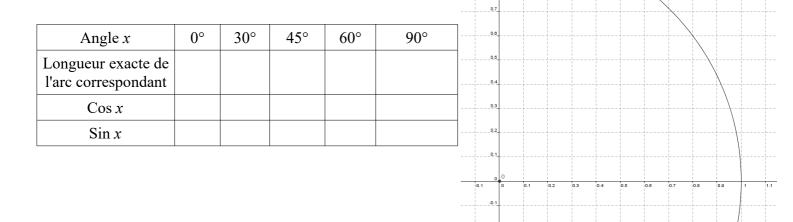


$$EH = \dots, HG = \dots$$
 et $\widehat{GEH} = \dots$

Dans le triangle GEH rectangle en H, on a :

$$\cos \widehat{GEH} = \dots = \dots = \text{donc}$$

$$\sin \widehat{GEH} = \dots = \dots = \text{donc}$$



V Propriétés du cosinus et du sinus :

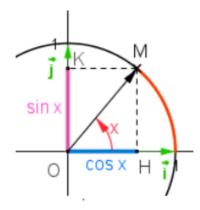
Propriétés : Pour tout x réel,

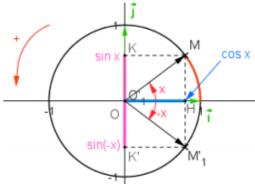
- (1) $-1 \le \sin x \le 1$ et $-1 \le \cos x \le 1$
- (2) $\cos^2 x + \sin^2 x = 1$
- (3) $\sin(-x) = \sin(x)$ et $\cos(-x) = \cos(x)$
- (4) Pour tout entier k, $\cos(x+k\times 2\pi)=\cos(x)$ et $\sin(x+k\times 2\pi)=\sin(x)$

Remarque: $(\sin x)^2$ se note $\sin^2(x)$.

Preuve:

- 1) Le cercle trigonométrique est de rayon 1 donc : $-1 \le \sin x \le 1$ et $-1 \le \cos x \le 1$
- 2) Dans le triangle OHM rectangle en H, le théorème de Pythagore permet d'établir que : $OH^2 + OK^2 = \cos^2 x + \sin^2 x = OM^2 = 1$





3) Les angles de mesures x et -x sont symétriques par rapport à l'axe des abscisses donc : $\sin(-x) = -\sin x$ et $\cos(-x) = \cos x$.

- Application 3: utilisation de la relation des carrés :

 On donne $\cos \frac{\pi}{5} = \frac{\sqrt{5}+1}{4}$. Calculer la valeur exacte de $\sin \frac{\pi}{5}$.
 - On donne $\cos \alpha = \frac{-3}{5}$ et $\alpha \in [-\pi \ ; \ \frac{-\pi}{2} \]$. Calculer la valeur de $\sin \alpha$.

VI Angles associés :

PROPRIÉTÉS

Pour tout nombre réel a, on a :

•
$$\sin(-\alpha) = -\sin \alpha$$

et

$$cos(-\alpha) = cos \alpha$$

•
$$\sin(\alpha + \pi) = -\sin\alpha$$

et

$$cos(\alpha + \pi) = -cos \alpha$$

•
$$\sin(\pi - \alpha) = \sin \alpha$$

et

$$\begin{array}{c}
\bullet \sin\left(\frac{\pi}{2} - \alpha\right) = \cos\theta \\
\bullet & \text{et}
\end{array}$$

$$\cos(\pi - \alpha) = -\cos \alpha$$

