	Fonctions de référence	2 ^{de}
(représentation graphique Par la suite, on utilisera année et bien sûr l'an pro N'oubliez pas que nous a	avons déjà vu les fonction affines.).
• Étudier le sens de var i	ine fonction et signe d'une fonction iation d'une fonction sur un intervalle I consiste à montrer	-
soit croissante, soit dec	croissante, soit constante (ou « rien du tout ») sur l'intervalle	? 1.
Soit f une fonction défin	ie sur un intervalle I. Soient deux réels x_1 et x_2 appartenan	t à I.
Dire que f est croissante (on dit que f « conserve	e sur I signifie que : si $x_1 < x_2$ alors $f(x_1) \le f(x_2)$ l'ordre »).	
Dire que f est décroissa (on dit que f « renverse l	nte sur I signifie que : si $x_1 < x_2$ alors $f(x_1) \ge f(x_2)$ l'ordre »).	
	une fonction f c'est déterminer l'intervalle (l'ensemble des déterminer l'intervalle sur lequel f est négative.	x) sur
lequel f est positive et		x) sur
lequel f est positive et I) La fonction carré		x) sur
lequel f est positive et I) La fonction carré		x) sur
lequel f est positive et I) La fonction carré Préambule:	déterminer l'intervalle sur lequel f est négative.	x) sur
lequel f est positive et I) La fonction carré Préambule : ➤ Calculer :	déterminer l'intervalle sur lequel f est négative. $(4\times3)^2 = \dots$	x) sur
lequel f est positive et I) La fonction carré Préambule: Calculer: $4 \times 3^2 = \dots$ $(-3)^2 \times 4 = \dots$	déterminer l'intervalle sur lequel f est négative. $(4\times3)^2 = \dots -3^2\times4 = \dots$	x) sur
lequel f est positive et 1) La fonction carré Préambule: Calculer: $4 \times 3^2 = \dots$	déterminer l'intervalle sur lequel f est négative. $(4\times3)^2 = \dots -3^2\times4 = \dots$	x) sur
lequel f est positive et 1) La fonction carré Préambule: Calculer: $4 \times 3^2 = \dots$ $(-3)^2 \times 4 = \dots$ Exprimer en fonction	déterminer l'intervalle sur lequel f est négative. $(4\times3)^2 = \dots -3^2\times4 = \dots$ $de x:$	x) sur
lequel f est positive et I) La fonction carré Préambule: Calculer: $4 \times 3^2 = \dots$ $(-3)^2 \times 4 = \dots$ Exprimer en fonction $(3 x)^2 = \dots$ $-5 x \times x = \dots$	déterminer l'intervalle sur lequel f est négative. $(4\times3)^2 = \dots -3^2 \times 4 = \dots$ $de x:$ $2(-x)^2 = \dots 5 \times (-x)^2 = \dots$	x) sur
lequel f est positive et 1) La fonction carré Préambule: Calculer: $4 \times 3^2 = \dots$ $(-3)^2 \times 4 = \dots$ Exprimer en fonction $(3x)^2 = \dots$ $-5x \times x = \dots$ Déterminer la valeur et	déterminer l'intervalle sur lequel f est négative. $(4\times3)^2 = \dots \\ -3^2\times4 = \dots$ $de x:$ $2(-x)^2 = \dots \\ 5\times(-x)^2 = \dots$ des expressions pour la valeur de x proposée :	
lequel f est positive et I) La fonction carré Préambule: Calculer: $4 \times 3^2 = \dots$ $(-3)^2 \times 4 = \dots$ Exprimer en fonction $(3x)^2 = \dots$ $-5x \times x = \dots$ Déterminer la valeur et	déterminer l'intervalle sur lequel f est négative. $(4\times3)^2 = \dots $ $-3^2\times4 = \dots$ $de x:$ $2(-x)^2 = \dots $ $5\times(-x)^2 = \dots$ $5\times(-x)^2 = \dots$ $x = \frac{3}{4}: -2x^2 = \dots $ $x = -3: -x^2 + 3x = \dots$	

-3

-2

-1

0

Tableau de valeurs :

 $\boldsymbol{\mathcal{X}}$

 $f(x)=x^2$

1

2

3

1

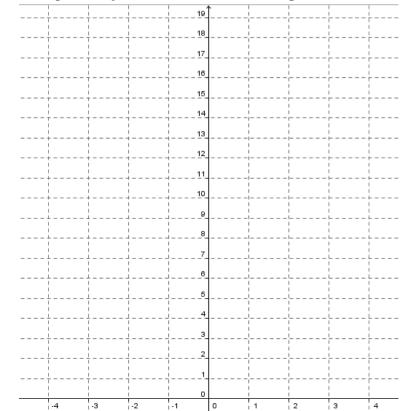
2. <u>Variations de la fonction carré :</u>

<u>Propriétés</u>: La fonction carré est strictement décroissante sur] - ∞ ; 0 [. La fonction carré est strictement croissante sur] 0; + ∞ [.

T 1 1	x	$-\infty$	$+\infty$	
Tableau de variation :	Variations de $f(x)=x^2$			
Preuve:				<u> </u>
	•••••			

3. Représentation graphique de la fonction carrée :

• Sa courbe représentative dans un repère (O, I, J) s'appelle une **parabole** d'équation $y = x^2$ et de **sommet** le point **O** de coordonnées (0;0).



Remarques:

- La parabole représentant la fonction carré est entièrement située au dessus de l'axe des abscisses.
 (un carré est toujours positif)!
- L'axe des ordonnées est un axe de symétrie de cette parabole
 C'est normal car deux nombres opposés ont le même carré : x² = (-x)²

Application 1: Comparer les carrés de	deux nombres:	
5,1 ° et 5,03 °:		
(-2,5) ² et (-9) ² :		
$(\sqrt{(5)} + 1)^2$ et $(\sqrt{(5)} - 1)^2$:		
7,3° et (-7,2)°:		
Application 2 : Encadrer x ² sur un int	tervalle •	
encadrer x^2 sur [5; 10]:		
encadrer $x^2 \text{sur} [-5; -3] : \dots$		
4. Équation carrée :		
_	N do color#:	
Propriétés:		ons \sqrt{a} et $-\sqrt{a}$ si $a > 0$,
Une équation du type $x^2 = a$ admet :	▶ une solutio	n unique 0 si $a=0$,
	► aucune solu	ation si $a < 0$.
Preuve : on raisonne par disjonction des	s cas :	
	• • • • • • • • • • • • • • • • • • • •	
Exemples: résoudre $x^2 = 9$	résoudre $x^2 = 6$	résoudre $x^2 = -4$
S =	S =	$\mathbf{S} =$

Exercice 1:

- 1. Calculer les images par la fonction carrée f des nombres suivants :
 - a) -2

- b) $\frac{2}{5}$ c) $\frac{3}{4}$ d) 10^3 e) 10^{-4}
- **f)** 0,7
- 2. Calculer les antécédents par la fonction carrée f, lorsque c'est possible, des réels :
 - **a)** 1
- **b)** -16
- c) 95
- **d)** 25
- e) 0.01
- **f)** 0,36

Exercice 2: Soit f la fonction carré définie sur \mathbb{R} par $f(x) = x^2$.

Pour chacune des phrases suivantes, indiquer si elle est vraie ou fausse. Justifier la réponse.

- 1. Tous les nombres réels ont exactement une image par f.
- 2. Il existe un nombre réel qui n'a pas d'antécédent par f.
- **3.** Tous les nombres réels ont, au plus, un antécédent par f.
- **4.** Il existe au moins un nombre réel qui a deux antécédents par f.

Exercice 3: Soit f la fonction définie sur \mathbb{R} par : $f(x) = x^2$.

On considère deux nombres réels n et m quelconques.

Calculer en fonction de n et m, l'expression suivante : $\frac{1}{2}[f(n+m)-(f(n)+f(m))]$.

Simplifier l'expression.

Exercice 4: En vous inspirant de la méthode utilisée pour déterminer le sens de variation de la fonction carrée, déterminer le sens de variation sur $]-\infty$; 0] puis sur $[0; +\infty]$ [de la fonction : $f(x) = -3x^2$.

Exercice 5 : En utilisant les variations de la fonction carrée, comparer les nombres suivants :

a)
$$(-3)^2$$
 et $(-4)^2$

b)
$$\left(\frac{1}{3}\right)^2$$
 et 3^2

c)
$$(\pi-3)^2$$
 et $(\pi+3)^2$

Exercice 6 : Afficher à l'écran de la calculatrice la courbe de la fonction carrée sur l'intervalle I suivant en précisant la fenêtre utilisée : a) I = [-0, 3; 0, 3]**b)** I = [100; 1000].

Exercice 7:

Construction d'une parabole

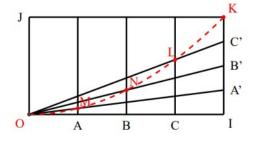
Voici un procédé utilisé par les tailleurs de pierres pour tracer une parabole sur un bloc rectangulaire.

Les points A, B, C du segment [OI] sont tels que:

$$OA = AB = BC = CI$$

Les points A', B', C' du segment [IK] sont tels que:

$$IA' = A'B' = B'C' = C'K$$



Justifier que les points O, M, N, L et K appartiennent à la courbe de la fonction carrée. (On pourra utiliser le théorème de Thalès)

II) La fonction inverse

1. <u>Définition</u>:

La fonction inverse est la fonction f définie sur $\mathbb{R} \setminus \{0\}$ par $f(x) = \frac{1}{x}$

Remarques : - L'intervalle]- ∞ ; $0[\ \cup\]0; +\infty[$ se note $\mathbb{R}\setminus\{0\}$ (« \mathbb{R} privé de 0) .

- La fonction inverse est définie sur $\mathbb{R}\setminus\{0\}$ car :

2. Variations de la fonction inverse :

<u>Propriété</u>: La fonction inverse est : \blacktriangleright strictement décroissante sur l'intervalle]- ∞ ; 0[;

ightharpoonup strictement décroissante sur l'intervalle]0; $+\infty$ [.

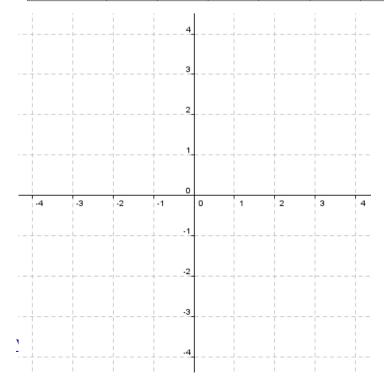
Tableau de variations de la fonction inverse :

Х	–∞	0 +∞
variation de $\frac{1}{x}$	_	_

<u>Preuve :</u>	• • • • • • • • • • • • • • • • • • • •				
• • • • • • • • • • • • • • • • • • • •					
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	

3. Représentation graphique de la fonction inverse :

X	-4	-3	-2	-1	- 0,5	-0,25	0,25	0,5	1	2	3	4
$f(x) = \frac{1}{x}$												



Remarque:

La représentation graphique de la fonction inverse est une **hyperbole** de centre O l'origine du repère. Elle est **symétrique par rapport O** le centre du repère, ce qui est normal puisque $f(-x) = -\frac{1}{x} = -(\frac{1}{x}) = -f(x)$

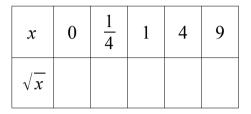
Applications:
\blacktriangleright Comparer $\frac{1}{2}$ et $\frac{1}{3}$:
\blacktriangleright Comparer $\frac{-1}{5}$ et $\frac{-1}{3}$:
► Encadrer la fonction inverse sur l'intervalle]2 ; 5] :
► Encadrer la fonction inverse sur l'intervalle]-13 ; -2[:
Encadrer la lonetion inverse sur l'intervalle j-13, -2[
► En vous inspirant de la méthode utilisée pour déterminer le sens de variation de la fonction
inverse, déterminer le sens de variation sur]0; $+\infty$ [de la fonction : $f(x) = -3 + \frac{2}{x}$.
λ
III) La fonction racine carrée
<u>Rappel</u> : Pour tout réel positif a , \sqrt{a} est le seul nombre positif dont le carré vaut a : $(\sqrt{a})^2 = a$.
Exemple: $(\sqrt{3})^2 =$
<u>Définition</u> : La fonction racine carrée est la fonction f définie sur $[0; +\infty[$ par $f(x) = \sqrt{x}]$
<u>Propriété</u> : La fonction racine carrée est strictement croissante sur l'intervalle $[0; +\infty[$.
Drauwa ·
Preuve:

Pour la fonction racine carrée

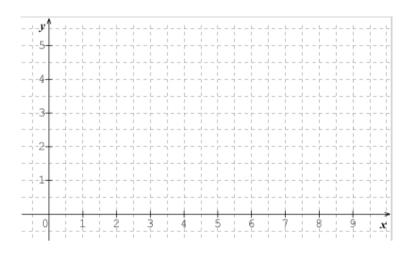
Tableau de variation

$f(x) = \sqrt{x} \begin{vmatrix} x & 0 & +\infty \\ +\infty & +\infty \end{vmatrix}$

Tableau de valeurs



Représentation graphique



À retenir: pour tous réels x et y positifs, $\sqrt{x} = y \Leftrightarrow x = y^2$

Applications: $\sqrt{3,12}$ et $\sqrt{3,113}$:
Comparer $\sqrt{2}$ et $\sqrt{\pi-1}$:
Résoudre dans \mathbb{R} l'équation $\sqrt{x}=2$:
► En vous inspirant de la méthode utilisée pour déterminer les variations de la fonction racine
carré, déterminer les variations de la fonction $f(x)=3-2\sqrt{x}$ sur $[0;+\infty[$

IV) La fonction cube

1. **<u>Définition</u>**: La fonction cube est la fonction f définie sur \mathbb{R} par $f(x) = x^3$.

Exemples: $(-2)^3 = \dots = 8^3 = \dots = (\sqrt{2})^3 = \dots = (-5\sqrt{3})^3 = \dots$

2. Variations de la fonction cube :

<u>Propriété</u>: La fonction cube est strictement croissante sur \mathbb{R} . Autrement dit si a < b alors $a^3 < b^3$

Pre	uve	: .	 	• • •	•••	 				. 	••	••			 	 		 • • •		 ••		••	• •	. 		 	 	· • •	••	 		 • •		
• • • •																																		
			 	•••	•••	 	• • •	· • •	• •			••	• •	• •	 	 ••	• •	 ••	• •	 ••	• •		• •		••	 ••	 ••		•••	 	• • •	 	• • •	••

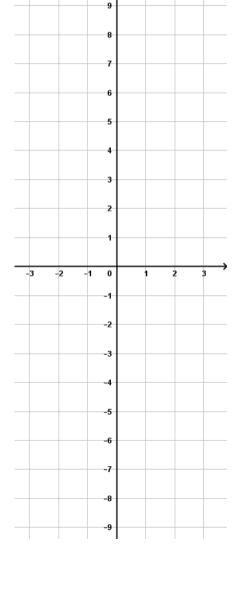
Tableau de variation

Tableau de valeurs

x	-3	-2	-1,5	-1	-0,5	0	0,5	1	1,5	2	3
x^3											

Remarque: $f(-x) = (-x)^3 = -x^3 = -f(x)$

La courbe représentative de la fonction cube est donc symétrique par rapport au point O le centre du repère.



Applications:

comparer (-3,12) ³ et (-3,118) ³ :	
--	--

Exemple commenté: Résoudre l'équation $x^3 = 1000$.

La fonction cube est strictement croissante sur R.

Donc il existe un unique réel a tel que $a^3 = 1000$.

Ce nombre *a* s'appelle la racine cubique de 1000.

Or $10^3 = 1000$ ce que l'on peut aussi écrire $\sqrt[3]{1000} = 10$

Autrement dit si $x^3 = 1000 \Leftrightarrow x^3 = 10^3 \Leftrightarrow x = 10$

$$S = \{10\}.$$

sur T I	sur Casio
menu Math	taper 3
Puis taper 4	puis taper shift
MPTH NB 1:▶Frac 2:▶Déc 3:³	puis ^
4: ³√(

Résoudre $x^3 = 125$:

• Résoudre l'inéquation $x^3 \le 8$. • on cherche quel nombre au cube donne 8 la fonction cube est strictement croissante sur \mathbb{R} . Ainsi $x^3 \le 8 \Leftrightarrow x^3 \le 2^3 \Leftrightarrow x \le 2$. L'ensemble solution de cette inéquation sont donc tout les nombres inférieurs ou égaux à 2. $S = \dots$

Synthèse:

Pour résoudre une équation ou une inéquation « cubique » , on utilise le fait que la fonction cube est strictement croissante sur R .

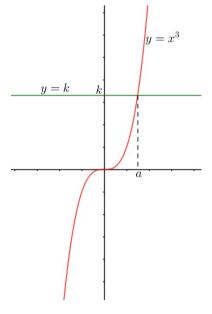
Soit k un réel. Il existe alors un unique réel a tel que $k = a^3$.

$$\bullet \ x^3 = k \Leftrightarrow x = a$$

•
$$x^3 \le k \Leftrightarrow x \le a \Leftrightarrow S =] -\infty; a]$$

•
$$x^3 \ge k \Leftrightarrow x \ge a \Leftrightarrow S = [a; +\infty[$$

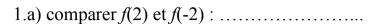
Résoudre dans \mathbb{R} l'inéquation $x^3 > -64$:



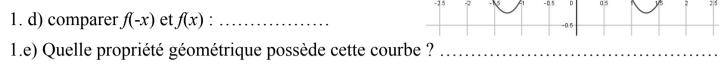
V) Parité d'une fonction

Activité 1 (« la molaire »)

1) On donne ci-contre la courbe représentant une fonction f. Par lecture graphique :



1.c) comparer
$$f(-2,5)$$
 et $f(2,5)$:.....



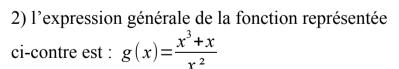
2.a) Quelle est le domaine de définition de
$$f$$
 ?:.....

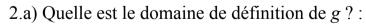
Activité 2

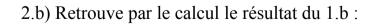
1) On donne ci-contre la courbe représentant une fonction *g* . Par lecture graphique :

1.b) comparer
$$g(-1)$$
 et $g(1)$:

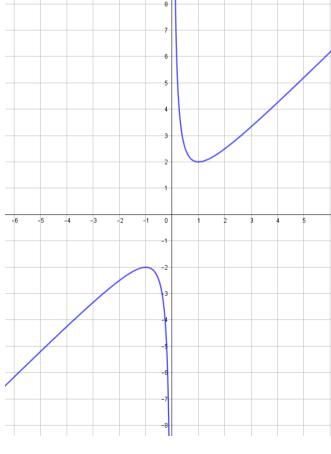
1. c) comparer
$$g(-x)$$
 et $g(x)$:.....







.....



<u>Définition</u>: On dit que I, une partie de \mathbb{R} , est centrée en zéro si : pour tout x de I alors -x appartient aussi à I.

Par exemple:

Les intervalles I = [-3; 3] et J =]-100; 100 [sont centrés en zéro.

 \mathbb{R} est un intervalle centré en zéro car il peut s'écrire]- ∞ ; + ∞ [

L'intervalle [0; 10] n'est pas un intervalle centré en zéro.

Définition : Soit f une fonction définie sur un intervalle I de \mathbb{R} centré en zéro.

- ► On dit que f est paire lorsque pour tout x de I : f(-x) = f(x).
- ► On dit que f est impaire lorsque pour tout x de I : f(-x) = -f(x).

Étudier la parité d'une fonction c'est montrer si elle est paire, impaire ou ni l'un ni l'autre.

Citer des fonctions paires que l'on a déjà rencontrées:

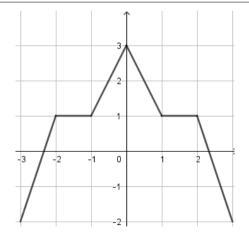
Citer des fonctions impaires que l'on a déjà rencontrées:

.....

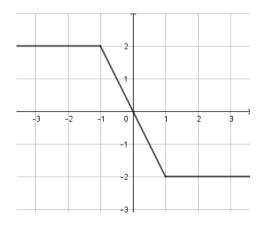
Remarque : Interprétation graphique de la parité :

- ► Lorsqu'une fonction f est **paire** alors est un axe de symétrie de sa courbe représentative Cf dans un repère orthogonal.
- ► Lorsqu'une fonction *g* est **impaire** alors ... est le centre de symétrie de sa courbe représentative C*g*.

Exemple:



Exemple:



Point méthode : lorsqu'on veut étudier la parité d'une fonction :

- ▶ Il faut en premier vérifier que l'ensemble de définition de la fonction est centré en zéro si ce n'est pas le cas elle ne peut-être ni paire ni impaire.
- Si c'est le cas, quand on veut montrer qu'elle est paire ou impaire, il faut montrer, <u>pour tout nombre appartenant à l'ensemble de définition</u>, que soit f(-x) = f(x) (elle est paire) ou que soit f(-x) = -f(x) (elle est impaire). (principe de l'égalité pour tout x, calcul littéral).
- Si on pressent au contraire qu'elle ne peut être ni l'un ni l'autre, il suffit de trouver un contreexemple pour lequel on a ni f(-x) = f(x) et ni f(-x) = -f(x) (principe du contre-exemple).

Exemples: Étudier la parité des fonctions suivantes:

$$f(x) = 2x^2 - 3 \qquad g(x) = \frac{-3}{x}$$

$$h(x) = 2x + 1$$
 $k(x) = x^3 + 1$

$$u(x) = x^2 - x \qquad v(x) = \sqrt{x}$$

.....

Exemples:

- 1) Compléter la courbe ci-contre en **rouge** pour que la courbe alors obtenue soit représentative d'une fonction *f* **paire** .
- 2) Compléter la courbe ci-contre en **vert** pour que la courbe alors obtenue soit représentative d'une fonction g **impaire**.
- 3) Établir le tableau de variations de f.

