Équations différentielles -Exercices

Niveau : Bac Sciences Mathématiques

Exercice 1:

Résoudre les équations différentielles suivantes :

$$(1): y'' - 3y' - 2y = 0$$

$$(2): y'' + 2y' + y = 0$$

$$(3): y'' + y' + y = 0$$

$$(4): y'' + 4y = 0$$

$$(5): y'' - y' = 0$$

$$(6): y^{(3)} - 2y'' = 0$$

$$(7): 4y" + 16y' + 25y = 0$$

$$(8): y'' - 5y' + 6y = 0$$

$$(9): 4y'' - 4y' + y = 0$$

$$(10): 3y^{(3)} - 2y'' - 3 = 0$$

Exercice 2:

Discuter suivant les valeurs du paramètre réel m les solutions de l'équation

différentielle: y'' - 2y' + (1 - m)y = 0

Exercice 3:

On considère les équations différentielles :

(1):
$$y'' - y' - 2y = 3e^{-x}$$
 et (2): $y'' - y' - 2y = 0$

1- Déterminer la solution générale de l'équation (2)

2-Soit g une fonction numérique deux fois dérivable sur \mathbb{R} .

a-Déterminer une solution particulière f de (1) sous la forme :

$$f(x) = (ax^2 + bx + c)e^{-x}$$

b-Montrer que : ψ est solution de $(1) \Leftrightarrow \psi - f$ est solution de (2)Déduire la solution générale de (1).

Exercices -EQUATIONS DIFFERENTIELLES -Niveau: Bac Sciences Mathématiques. Pr. OUBIJI

Exercice 4:

Le but de cet exercice est de résoudre l'équation différentielle linéaire suivante avec second membre :

$$(E)$$
: $y'' - 5y' + 6y = e^{2x}$

1) Chercher une solution particulière de (E) sous la forme :

$$y_0 = (ax + b)e^{2x}$$

- 2) Résoudre l'équation différentielle (E'): y'' 5y' + 6y = 0
- 3) Montrer que :

$$y$$
 est solution $de(E) \Leftrightarrow y - y_0$ est solution $de(E')$

- 4) Donner la solution générale de l'équation différentielle (E)
- 5) Trouver la solution particulière f de (E) sachant que sa courbe représentative passe par le point A(0;1) et admet en ce point une tangente parallèle à la droite d'équation 2x+y-1=0

Exercice 5:

Soit F la primitive de la fonction $f: t \mapsto \frac{2}{\sqrt{1+4t^2}}$ sur \mathbb{R} , qui s'annule en 0.

- 1) Prouver que F est impaire.
- 2) Montrer que $\forall x \in \mathbb{R}^+$; $\ln (1 + 2x) \le F(x)$ et déterminer $\lim_{x \to +\infty} F(x)$
- 3.a) Montrer que F est une bijection de \mathbb{R} vers \mathbb{R} . On pose : $G = F^{-1}$
- b) Montrer que G est dérivable sur \mathbb{R} et que :

$$\forall x \in \mathbb{R}^+; G'(x) = \frac{1}{2} \sqrt{1 + 4G^2(x)}$$

- c) En déduire que G est deux fois dérivable sur $\mathbb R$ et que G est une solution de l'équation différentielle y''-y=0
- d) Calculer G(0) et G'(0) puis écrire G(x) et F(x) en fonction de x

Exercice 6:

Soit f une fonction deux fois dérivable sur $]0, +\infty[$. On considère l'équation différentielle $(E): x \in]0, +\infty[:f'(1-x)=f(x)$

- 1) Vérifier que f''(1-x) + f(1-x) = 0
- 2) En déduire les solutions de l'équation différentielle (E)

Exercice 7:

Le but de cet exercice est de résoudre l'équation différentielle non linéaire suivante :

(E):
$$yy'' - 2(y')^2 - 2yy' - y^2 = 0$$

1-a) On pose : $y = \frac{1}{z}$

Calculer y', y'' en fonction de z, z', z''

b) Montrer que:

[y est solution de (E)] \Leftrightarrow [z est solution de (E')]

Où : (E') est l'équation différentielle linéaire suivante :

$$z'' - 2z' + z = 0$$

- c) Résoudre (E') , en déduire les solutions de (E)
- 2) Déterminer la solution f de (E) telle que : $f(1) = \frac{1}{e}$ et f(0) = 1

Exercice 8:

On considère l'équation différentielle :

(E):
$$xy'' + 2(x+1)y' + (x+2)y = 0$$

Où yest la fonction inconnue deux fois dérivable sur \mathbb{R}^{*+} .

On pose z = xy.

1) Montrer que :

$$z'' + 2z' + z = 0 \Leftrightarrow yest solution de(E)$$

2) Intégrer(E).

Exercice 9:

Soit f une fonction deux fois dérivable sur $]0, +\infty[$.

On considère l'équation différentielle :

$$(E):x \in]0,+\infty[:f'(x)=f\left(\frac{1}{x}\right)]$$

1) Montrer que:

$$\forall x \in]0, +\infty[: x^2 f''(x) + f(x) = 0$$

- 2) Vérifier que la fonction $g: x \mapsto f(e^x)$ est une solution de l'équation différentielle y'' y' + y = 0
- 3) En déduire les solutions de l'équation différentielle (E)