Qu’est-ce que la brisure de symétrie ?

Yoichiro Nambu qui se voit attribué la moitié du prix (1 million d'euros)Le prix Nobel de physique a été attribué cette année à 1 chercheur américain, M. Yoichiro Nambu et 2 chercheurs japonnais, M. Makoto Kobayashi et Toshihide Maskawa « pour la découverte du mécanisme de brisure spontanée de symétrie en physique subatomique » (Réf : le monde le site officiel des prix nobel).

Si le prix nobel de physique 2007 était un tant soit peu compréhensible par les non-initié à travers ses applications pratiques (voir Un prix Nobel Français dans notre ordinateur !) le prix Nobel 2008 semble beaucoup plus éloigné de nos préoccupations quotidiennes. De quoi s’agit-il ?

La symétrie et la physique

flocon de neigeLa symétrie des objets naturels (les flocons de neige, certaines fleurs) a quelque chose de fascinant car relativement rare. Lorsqu’on parle de symétrie en physique, il ne s’agit pas de celles des objets naturels. Il s’agit en fait de la symétrie des lois de la physique. Mais que vient faire la symétrie dans ces lois ?

La symétrie pour les physiciens est la capacité à rester insensible à certaines transformations. Ainsi, un objet symétrique comme un carré, une sphère ou un flocon de neige n’est pas discernable de son reflet dans un miroir. Si l’on compare l’objet original et son reflet, on verra le même objet : on parle dans ces conditions de symétrie par réflexion dans un miroir.

Dans leur recherche de loi pour comprendre et prévoir le monde, les physiciens ont tendance à rechercher de telles symétries pour simplifier ces lois. C’est à dire qu’ils élaborent des lois qui sont inchangées lorsqu’on appliquent certaines transformations.

La symétrie par translation dans l’espace

Prenons un exemple simple de symétrie : la symétrie par translation dans l’espace. C’est une symétrie suivie par les lois de la physique. Celle-ci stipule que si l’on fait une certaine mesure ou qu’on applique une certaine loi quelque part dans l’espace les résultats que l’on obtiendrait ne dépendent pas de l’endroit où l’on fait la mesure. Cette loi parait bien étrange si l’on réfléchit un peu. En effet, si je mesure la valeur de la gravitation exercée par la Terre à Paris, je n’obtiendrais par la même valeur que si je faisais la mesure 400 km au-dessus du sol Parisien.

La symétrie par translation ne serait-elle pas vérifiée ? En réalité pour appliquer la symétrie par translation dans l’espace à la gravitation exercée par la terre, il faudrait également déplacer la terre de 400 km à la verticale de Paris. Dans ces conditions, la valeur de la gravitation sera la même.

Cela parait stupide d’inventer une loi qui dit que la valeur de la gravitation à Paris serait la même si on déplace la Terre dans l’espace. Quel est l’intérêt de chercher à vérifier une telle symétrie ? Cela permet de simplifier l’expression de la loi de gravitation : au lieu d’exprimer la loi de la gravitation à chaque position possible de la terre, on l’exprime d’une manière générale à une certaine distance de la terre. D’ailleurs, la preuve que la symétrie par translation d’espace est bien vérifiée est obtenue en se rappelant que la terre est toujours en mouvement autour du soleil et que s’il on fait la mesure de la gravitation Terrestre un certain jour à une certaine heure à Paris, on trouvera la même valeur un autre jour alors que nous sommes plusieurs millions de kilomètre plus loin.

La recherche de la symétrie dans les lois de la physique n’est donc pas une recherche esthétique de perfection mais plutôt une recherche de simplification de ces lois.

Quelles sont les symétries vérifiées par les lois de la physique ?

Il y a comme on vient de le voir la symétrie par translation dans l’espace. On admet généralement que la symétrie par translation de temps est également juste : les lois physiques vérifiée aujourd’hui était vrai hier et seront vrais demain (par exemple si l’on recréé les conditions du big bang dans le LHC ce qu’on trouvera était valable au moment du big bang). Bien entendu, cette loi est difficile à vérifier au-delà de la mémoire humaine mais elle est nécessaire pour décrire ce qu’a été le monde avant que la science ne commence à le décrire. Si cette symétrie était violée, alors on ne pourrait plus dire grand chose du passé puisque cela voudrait dire que les lois de la physique telles qu’elles s’expriment aujourd’hui n’étaient pas valable dans le passé.

Une symétrie fondamentale pour l’histoire de la physique est la symétrie de vitesse constante en ligne droite. Celle-ci affirme que toutes les lois physiques doivent être les même pour 2 observateurs en déplacement à vitesse constante l’un par rapport à l’autre. Autrement dit, si l’on se déplace à vitesse constante en ligne droite et que l’on ne peut pas observer l’environnement (imaginons par exemple un voyage interstellaire dans un vaisseau sans hublot), aucune expérience ne nous permet de déterminer si nous sommes en mouvement ou non. Cette symétrie est à l’origine de la relativité d’Einstein : c’est en réalisant qu’elle n’était pas vérifiée par les lois du mouvement de Newton appliquée à l’électromagnétisme qu’Einstein proposa de nouvelles lois du mouvement.

Un dernier exemple de symétrie qui fonctionne : les phénomènes ne sont pas modifiés lorsqu’on remplace un atome par un autre du même type.

Certaines symétries ne fonctionnent pas

Bien entendu, cela devient tout de suite plus intéressant (et du coup plus compliqué) lorsqu’on s’intéresse aux symétries qui ne sont pas vérifiées. On parle alors de brisure de symétrie.

La dépendance au changement d’échelle en est un exemple assez simple à se représenter. Imaginons un objet qui ait une taille de l’ordre de 1 m : une table en bois par exemple. Peut-on construire de la même façon une table avec une échelle différente ? Une table de 10 m ? Une table de 100 m ? Une table de 1 km ? Il est évident que non. Il arrivera un moment où le plateau de bois s’affaissera sous son propre poids. Les lois de la physique ne sont donc pas insensibles au changement d’échelle.

Une autre symétrie classique qui ne fonctionne pas est celle évoquée au début de cet article sur la réflexion par un miroir. C’est difficile à expliquer mais même si 99.9% des lois de la physique vérifient une symétrie droite-gauche, toutes ne le sont pas. En particulier, dans le monde des particules, la droite et la gauche est définie de manière absolue.

La brisure de symétrie Matière-antimatière

Une brisure de symétrie qui présente un intérêt tout particulier pour nous (et pour les lauréats du prix Nobel de physique 2008) est la brisure de symétrie Matière-Antimatière.

Toutes les particules qui constituent la matière ont une soeur jumelle « anti-particulaire ». Ainsi, il existe une particule nommée positon qui a toutes les caractéristiques d’un électron mais qui est chargé positivement. La rencontre entre une particule et son homologue anti-particule est détonante : les 2 entités disparaissent et libèrent toute leur énergie de masse (voir l’article “la masse de ce produit contient l’équivalent de 21 000 tonnes de TNT par gramme”). Conseil de physicien : si vous rencontrez un jour un extra-terrestre assurez-vous qu’il est fait de matière car une poignée de main entre un terrien-matière et un extraterrestre-antimatière ne donnerait qu’un flash intense d’énergie.

La symétrie matière-antimatière stipule qu’un monde fait d’antiparticule a exactement les mêmes caractéristiques qu’un monde fait de particules. C’est à dire que nos lois de la physique ne font pas la différence entre matière et anti-matière : pour notre extraterrestre-antimatière la tartine tombe toujours du côté beurré de sa planète-antimatière.

Au moment du big bang, il y a 14 Milliards d’année, la quantité de matière et d’antimatière était exactement la même. Comme nous habitons dans un univers fait de matière, il faut bien qu’il y ait une petite différence entre une particule et son homologue antiparticule. Cette différence accordant un petit avantage à la matière qui a pu perdurer au-delà des premières seconde du big bang. Les travaux des 3 Nobels de physique 2008 ont permis d’expliquer cette petite différence, cette brisure spontanée de symétrie matière-antimatière.

Comme l’ont dit les membres du comité Nobel « nous sommes tous des enfants de la brisure de symétrie » et cela valait bien un Nobel à ceux qui ont su l’expliquer.

Références bibliographiques : chapitre « la symétrie en physique » in la nature de la physique – R. Feynman

5 thoughts on “Qu’est-ce que la brisure de symétrie ?

  1. Cher Physicien,
    Les symétries se rencontrent aussi très souvent en chimie.
    Là il existe beaucoup d’applications…
    Une, très chère à la France, est celle des molécules des sucres. Un liquide sucré fait « tourner » la polarisation de la lumière. Certains sucres le font dans un sens et d’autres dans l’autre.
    Les petits malins qui chaptalisent (ajout de sucre au moût) doivent donc être très attentifs à ne pas se tromper de sucre s’ils ne veulent pas se faire pincer!
    Amitiés
    P.S. Je suis désolé, mais je ne donne pas mon vrai e-Mail, pour préserver mon anonymat. Mais j’ai mis ton blog dans mes favoris.

  2. La brisure de symétrie pour compléter lr commentaire de Armand s’applique au chocolat lors de sa transformation.

    Il faut vérifier la température et laisser stable afin de se gaver le bide 😉

  3. Expérience à faire (effet miroir), anti et particule, un effet rréciproque : scinder en deux une particule et une antiparticule, et les assembler en sens contraire….

Laisser un commentaire