Ondes et particules : que faut-il en retenir ?

Le nouveau programme de terminale 2012 commence par un petit thème ondes et particules. Voyons ce qu’il faut retenir de ce chapitre pour passer le bac version 2013.

Note valables pour toutes les Fiches « capacités exigibles » : les capacités attendues sont en italique et en gras. Les capacités expérimentales sont simplement en italique. Ces dernières ne seront pas systématiquement commentées.

Je sais extraire et exploiter des informations sur l’absorption de rayonnements par l’atmosphère terrestre et ses conséquences sur l’observation des sources de rayonnements dans l’Univers.

Il faut être capable de comprendre des graphiques du genre :

source wikipedia

Sur lequel est représenté l’opacité de l’atmosphère terrestre en fonction de la longueur d’onde du rayonnement. Ainsi, on voit que l’atmosphère ne laisse quasiment pas passer les rayonnements gamma, X et UV. Ainsi, nous sommes obligé d’envoyer des téléscopes en orbite au-dessus de l’atmosphère terrestre pour observer les sources spatiales de tels rayonnements. Au niveau du visible et du proche infrarouge, on peut faire les observations de la terre. Par contre, ça se gate franchement du côté de l’infrarouge et là encore, on utilise des télescopes spatiaux. Pour les micro-ondes et les ondes radio, pas de souci, on peut faire les observations de la surface du globe. Seul problème – récurent en astronomie- la pollution liée aux installations humaines. Ainsi, les radiotélescopes sont installés dans les désert loin de l’activité humaine pour ne pas être parasités. Enfin, les ondes radio de grandes longueurs d’onde sont bloquées (c’est d’ailleurs ce qu’on utilise en radio pour propager des ondes tout autour du globe, c’est comme ça qu’on peut écouter radio pékin à paris avec le poste radio de papy).

Je connais des sources de rayonnement radio, infrarouge et ultraviolet

  • Des sources radio : toutes les babioles communicantes de notre environnement (téléphones sans fil, bornes wifi, antennes diverses et variées) mais il existe également des sources astronomiques. Les étoiles émettent dans ce domaine mais les plus impressionnants sont les pulsars, ce qui reste après une supernova, et les quasars, le centre des galaxies rayonnant un puissant signal radio. On suppose qu’il s’agit du rayonnement de trou noir supermassif.
  • Des sources infrarouge : tous les objets à température ambiante émettent un rayonnement infrarouge. Mais comme plus l’objet est chaud, plus il émet un rayonnement à courte longueur d’onde, les objets à 37°C émettent un rayonnement dans l’infrarouge moins profond que ceux à 20 °C. C’est comme cela que les militaires en opération peuvent voir la nuit, en utilisant des caméras calées sur le rayonnement infrarouge émis par les bêtes à sang chaud. C’est aussi comme cela que certains serpents détectent leurs proies. En astronomie, on observe les nuages de poussières et les étoiles en formation.
  • Des sources ultraviolet : Comme les objets à température ambiante émettent dans l’infrarouge, les objets très chauds émettent dans l’ultraviolet. C’est le cas des ampoules halogènes dont la température du filament en tungstène est chauffé à 3200 K. Pour protégé l’utilisateur, l’ampoule filtre les UV. C’est le cas également des étoiles, particulièrement de notre étoile, le soleil, et c’est la raison pour laquelle on met de la crème solaire à la plage pour empêcher les UV de pénétrer la peau.

Je sais extraire et exploiter des informations sur les manifestations des ondes mécaniques dans la matière.

J’espère que vous savez faire… Pour cela, il n’y a pas d’autre moyens que de faire des exercices et de s’entraîner. Voyez par exemple les sujets tombés les années précédentes sur le son. Ils sont tous encore valables avec le nouveau programme.

Je connais et sais exploiter la relation liant le niveau d’intensité sonore à l’intensité sonore.

Ah, celle-là je suis sûr que vous aller l’adorer… Le niveau sonore L et l’intensité sont reliés par :

L=10.log(I/I0) <-> I=I0.10L/10 où I0=10-12 W/m²

 log ?! Qu’est-ce que c’est que ce truc ? C ‘est une fonction qui associe la puissance de dix correspondant à un nombre. Par exemple log(100)=2 car 100 = 10 2 et log(0,001)=-3 car 0,001 = 10 -3. Vous voyez le topo ? C’est pas très compliqué en fait, et il suffit de savoir taper log(nombre) sur sa calculatrice. Entraînez-vous, vous allez voir, c’est facile.

Et donc, le genre de question qu’on va vous posez c’est : un trompettiste produit un son de 60 dB (Ah oui, j’ai oublié de vous dire que le niveau sonore s’exprime en dB). Calculer l’intensité correspondante. Calculer le niveau sonore de deux trompettistes.

Alors, voyons ça. 60 dB, je mets L=60 dans la seconde formule, je trouve : I1=I0.1060/10 =I0.106 =  10-6 W/m² . Et voilà pour la première question.
S’il y a deux trompettistes, je dis I2 pour deux trompettistes = 2 fois I1. Car les intensité sonore s’additionnent. Je trouve donc I2 =  2.10-6 W/m² . Pour le niveau sonore, je prends la première formule et je trouve L = 10.log(I2/I0) = 63 dB. Voilà !

Je sais extraire et exploiter des informations sur des sources d’ondes et de particules et leurs utilisations, sur un dispositif de détection.
Je sais mettre en œuvre un capteur ou un dispositif de détection.

Là encore, il n’y a pas grand chose à en dire, si ce n’est qu’il faut s’entraîner un peu. Sur l’académie de Lyon, voici une activité « rayonnement dans l’univers » qui circule pour entraîner les élèves. Pour le dispositif de détection, ça peut être un sismomètre, un détecteur à ultrason, etc. Le matériel est propre à chaque établissement scolaire et à la fin de l’année vous serez interrogé sur le matériel qui aura été utilisé en classe.