Programme de mathématiques, Sixième

L’enseignement des mathématiques en classe de sixième a une triple visée :

  • consolider, enrichir et structurer les acquis de l’école primaire ;
  • préparer à l’acquisition des méthodes et des modes de pensée caractéristiques des mathématiques (résolution de problèmes et divers moyens d’accéder à la vérité);
  • développer la capacité à utiliser les outils mathématiques dans différents domaines (vie courante, autres disciplines).

Le vocabulaire et les notations nouvelles ( » , % , Î , [AB] , (AB) , [AB) , AB, ) sont introduits au fur et à mesure de leur utilité, et non au départ d’un apprentissage.

Note : les points du programme (connaissances, capacités et exemples) qui ne sont pas exigibles pour le socle sont écrits en italiques. Si la phrase en italiques est précédée d’un astérisque l’item sera exigible pour le socle dans une année ultérieure. Dire que l’exigibilité pour le socle est différée ne veut pas dire que la capacité ne doit pas être travaillée – bien au contraire ! mais que les élèves pourront bénéficier de plus de temps pour la maîtriser.

1. Organisation et gestion de données. Fonctions

La résolution de problèmes de proportionnalité est déjà travaillée à l’école primaire. Elle se poursuit en Sixième, avec des outils nouveaux. La proportionnalité fait l’objet d’un apprentissage continu et progressif sur les quatre années du collège et permet de comprendre et de traiter de nombreuses notions du programme.

À l’école primaire, les élèves ont été mis en situation de prendre de l’information à partir de tableaux, de diagrammes ou de graphiques. Ce travail se poursuit au collège, notamment avec l’objectif de rendre les élèves capables de faire une interprétation critique de l’information apportée par ces types de présentation des données, aux natures très diverses, en liaison avec d’autres disciplines (géographie, sciences de la vie et de la terre, technologie…).

2. Nombres et Calculs

En continuité avec l’école élémentaire les problèmes doivent permettre aux élèves d’associer à une situation concrète un travail numérique, de mieux saisir le sens des opérations figurant au programme. Les problèmes proposés sont issus de la vie courante, des autres disciplines ou des mathématiques.

Les travaux numériques prennent appui sur la pratique du calcul exact ou approché sous ses différentes formes, souvent utilisées en interaction : calcul mental, calcul à la main ou instrumenté. À la suite de l’école primaire, le collège doit, en particulier, permettre aux élèves d’entretenir et de développer leurs compétences en calcul mental notamment pour la perception des ordres de grandeur.

3. Géométrie

À l’école élémentaire, les élèves ont acquis une première expérience des figures et des solides les plus usuels, en passant d’une reconnaissance perceptive (reconnaissance des formes) à une connaissance plus analytique prenant appui sur quelques propriétés (alignement, perpendicularité, parallélisme, égalité de longueurs, milieu, axes de symétrie), vérifiées à l’aide d’instruments. Ils ont été entraînés au maniement de ces instruments (équerre, règle, compas, gabarit) sur des supports variés, pour construire des figures, en particulier pour le tracé de perpendiculaires et de parallèles à l’aide de la règle et de l’équerre.

Les travaux conduits en sixième prennent en compte les acquis antérieurs, évalués avec précision et obéissent à de nouveaux objectifs. Ils doivent viser d’une part à stabiliser les connaissances des élèves et d’autre part à les structurer, et peu à peu à les hiérarchiser. L’objectif d’initier à la déduction est aussi pris en compte. À cet effet, les activités qui permettent le développement des capacités à décortiquer et à construire des figures et des solides simples, à partir de la reconnaissance des propriétés élémentaires, occupent une place centrale. Les travaux géométriques sont conduits dans différents cadres : espace ordinaire (cour de récréation, par exemple), espace de la feuille de papier uni ou quadrillé, écran d’ordinateur. La résolution des mêmes problèmes dans ces environnements différents, et les interactions qu’elle suscite, contribuent à une approche plus efficace des concepts mis en oeuvre.

Les connaissances géométriques permettent de modéliser des situations (par exemple représenter un champ par un rectangle) et de résoudre ainsi des problèmes posés dans l’espace ordinaire. Les formes géométriques (figures planes, solides) se trouvent dans de nombreux domaines :architecture, oeuvres d’art, éléments naturels, objets d’usage courant… Ces mises en relation permettent peu à peu de dégager le caractère universel des objets géométriques par rapport à leurs diverses réalisations naturelles ou artificielles.

4. Grandeurs et mesures

En continuité avec le travail effectué à l’école élémentaire, cette rubrique s’appuie sur la résolution de problèmes souvent empruntés à la vie courante. Elle permet d’aborder l’histoire des sciences, d’assurer des liens avec les autres disciplines, en particulier la technologie et les sciences de la vie et de la Terre, de réinvestir les connaissances acquises en mathématiques, mais aussi d’en construire de nouvelles. Par exemple, le recours aux longueurs et aux aires permet d’enrichir le travail sur les nombres non entiers et les opérations étudiées en classe de sixième. Il est important que les élèves disposent de références concrètes pour certaines grandeurs et soient capables d’estimer une mesure (ordre de grandeur).

L’utilisation d’unités dans les calculs sur les grandeurs est légitime. Elle est de nature à en faciliter le contrôle et à en soutenir le sens. À travers les activités sur les longueurs, les aires et les volumes, les élèves peuvent se construire et utiliser un premier répertoire de formules.

Source : Bulletin officiel spécial n° 6 du 28 août 2008

Extrait des bulletins officiels du minsitère de l’Education Nationale.