1^{ère} S: chap2/contrôle n°1

1- Donner en détail et en les nommant les différentes formes d'un polynôme du second degré.

nom: correction

- a) forme développée : $P(x) = ax^2 + bx + c$ avec a, b, c 3 réels et $a \ne 0$
- b) forme canonique : $P(x) = a(x-\alpha)^2 + \beta$ avec $\alpha = -\frac{b}{2a}$; $\beta = P(\alpha)$
- c) forme factorisée : $P(x) = a(x x_1)(x x_2)$ avec x_1 et x_2 les racines, si elles existent
- d) $P(x) = a(x^2 sx + p)$ avec $s = x_1 + x_2 = -\frac{b}{a}$; $p = x_1 \times x_2 = \frac{c}{a}$
- 2- Développer et réduire les expressions suivantes :

a-
$$A(x) = (x-2)(x+3)$$
 $x_1 = 2$ et $x_2 = -3$ donc $s = -1$ et $p = -6$ $= x^2 + x - 6$

b-
$$B(x) = -3(x+1)(x-2)$$
 $x_1 = -1$ et $x_2 = 2$ donc $s = 1$ et $p = -2$
= $-3(x^2 - x - 2)$
= $-3x^2 + 3x + 6$

c-
$$C(x) = 2(x+1)^2 - 5$$
 Identité remarquable 1 : $(a+b)^2 = a^2 + 2ab + b^2$
 $= 2(x^2 + 2x + 1) - 5$
 $= 2x^2 + 4x + 2 - 5$
 $= 2x^2 + 4x - 3$

d-
$$D(x) = 3[(x-1)^2 + 2]$$
 Identité remarquable 1 : $(a-b)^2 = a^2 - 2ab + b^2$
 $= 3[(x^2 - 2x + 1) + 2]$
 $= 3[x^2 - 2x + 3]$
 $= 3x^2 - 6x + 9$

3- Donner la forme canonique de $P(x) = 2x^2 - 12x + 24$

Posons
$$a=2; b=-12; c=24$$
 et $\alpha=-\frac{b}{2a}=\frac{12}{4}=3$; $\beta=P(\alpha)=P(3)=2\times(3)^2-12\times 3+24=6$ Alors pour tout $x\in\mathbb{R}$, $P(x)=2(x-3)^2+6$

4- Dresser en le justifiant le tableau de variations sur \mathbb{R} de $Q: x \mapsto 3x^2 + 7x - 1$

Posons
$$a=3; b=7; c=-1$$
 et $\alpha=-\frac{b}{2a}=-\frac{7}{6}$; $\beta=Q(\alpha)=Q\left(-\frac{7}{6}\right)=3\times\left(\frac{49}{36}\right)-\frac{49}{6}-\frac{12}{12}=-\frac{61}{12}$

a>0 donc Q admet un minimum : le minimum est atteint en $\alpha=-\frac{7}{6}$ et vaut $\beta=-\frac{61}{12}$

x	$-\infty$	$-\frac{7}{6}$	+∞
Q(x)	$+\infty$	_ <u>61</u> /	+∞ ,,,

- 5- $P(x) = -2x^2 + 5x + 7$.
 - a- Déterminer une racine évidente de P(x) : P(-1) = 0 donc $x_1 = -1$ est racine évidente.
 - b- En déduire la forme factorisée de P(x): le produit des racines vaut $\frac{7}{-2}$ donc $x_2 = \frac{7}{2}$ est racine de P(x): pour tout $x \in \mathbb{R}$, $P(x) = -2(x+1)\left(x-\frac{7}{2}\right) = (x+1)(-2x+7)$