PRIMITIVES D'UNE FONCTION

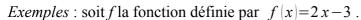
À partir d'une fonction f, on a vu que l'on pouvait déterminer sa dérivée f'. On peut donc se poser la question inverse : est-il possible, à partir d'une fonction dérivée, de « remonter » à la fonction d'origine ?

I - Ensemble des primitives d'une fonction

Définition : f est une fonction définie sur un intervalle I de \mathbb{R} .

On appelle primitive de f sur I toute fonction F définie et dérivable sur I telle que

pour tout x de I, F'(x) = f(x)



Les fonctions $F(x) = x^2 - 3x + 5$, $G(x) = x^2 - 3x - 2$ sont des primitives de f.

soit f la fonction définie par $f(x)=3x^2$.

Les fonctions $F(x)=x^3$, $G(x)=x^3-4$ sont des primitives de f.

ATTENTION: une primitive n'est pas unique.

Théorème : soit f une fonction définie sur un intervalle I de \mathbb{R} .

Si f admet une primitive F sur I, les primitives de f sont les fonctions du type

G(x) = F(x) + k où k est une constante réelle.

Méthode pour savoir si une fonction F est une primitive d'une fonction f sur un intervalle I

a)
$$F(x) = \frac{x^2}{x+1}$$
 et $f(x) = \frac{x^2+2x}{(x+1)^2}$; F est-elle une primitive de la fonction f définie sur $I =]-1; +\infty[$?

Si F'(x) = f(x) pour tout x de I, alors F est une primitive de f.

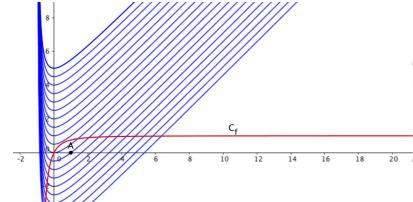
On calcule F'(x) $F(x) = \frac{u(x)}{v(x)}$ avec $u(x) = x^2$ et v(x) = x + 1

 $F'(x) = \frac{2x \times (x+1) - x^2 \times 1}{(x+1)^2} = \frac{x^2 + 2x}{(x+1)^2} = f(x)$ donc F est UNE primitive de f.

b) Déterminer LA primitive G de f qui vérifie G(1)=0.

 $G(1)=0 \Leftrightarrow F(1)+k=0 \Leftrightarrow \frac{1}{2}+k=0 \Leftrightarrow k=-\frac{1}{2}$ On sait que G(x)=F(x)+k.

LA primitive G de f qui vérifie G(1)=0 est $G(x)=\frac{x^2}{x+1}-\frac{1}{2}$



En rouge C_f et en bleu la famille des primitives G telles que G(x) = F(x) + k

avec $k de -5 \dot{a} +5$ avec un pas de 0,5

On peut constater qu'une seule de ces -primitives passe par le point A(1;0)

SF2 et SF3 page 79 + Exercices 31 à 38 page 91

II - Primitives des fonctions de référence

On lit « à l'envers » le tableau des dérivées usuelles ; on obtient UNE primitive, pour les obtenir toutes, il suffit d'ajouter une constante k.

Exercices 37 à 41 page 97

f(x)	F(x)	I
0	k	\mathbb{R}
$\frac{1}{x^2}$	$-\frac{1}{x}$	\mathbb{R}^*
$\cos x$	$\sin x$	\mathbb{R}
$\cos(ax+b)$	$\frac{1}{a}\sin(ax+b)$	\mathbb{R}

f(x)	F(x)	I
a	ax	\mathbb{R}
x^n	$\frac{x^{n+1}}{n+1}$	$\mathbb{R} \text{ si } n > 0$ $\mathbb{R}^* \text{ si } n < 0$
$\sin x$	$-\cos x$	\mathbb{R}
$\sin(ax+b)$	$-\frac{1}{a}\cos(ax+b)$	\mathbb{R}

Après l'étude des fonctions logarithme et exponentielle :

e^x	e^x	\mathbb{R}
е	е	11/2

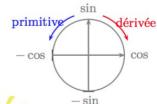
$\frac{1}{x}$	$\ln x$	\mathbb{R}_+^*
\boldsymbol{x}		

Exemples : une primitive de la fonction f définie pour tout $x \neq 0$ par $f(x) = \frac{1}{x^6}$ est $F(x) = \frac{x^{6+1}}{6+1} = \frac{x^7}{7}$

Une primitive de la fonction f définie sur \mathbb{R} par $f(x) = \sin(3x-5)$ est $F(x) = -\frac{1}{3}\cos(3x-5)$

Une aide pour les fonctions trigonométriques :

Pour dériver, on tourne d'un quart tour vers la droite Pour trouver la primitive, on tourne d'un quart tour vers la gauche.



Opération sur les limites

Fonction du type	Une primitive
u' + v'	u + v
$k \times u'$	$k \times u$
$u'u^n$	$\frac{u^{n+1}}{n+1}$

Condition

 $u(x) \neq 0$ pour tout $x \in I$ si n est négatif

Après l'étude des fonctions logarithme et exponentielle :

$u'\mathrm{e}^u$	e^u	
$\frac{u'}{u}$	$\ln u$	1

u(x) > 0 sur I

Exemples: une primitive de la fonction f définie sur \mathbb{R} par f(x)=5x est $F(x)=5\times\left(\frac{x^2}{2}\right)$

une primitive de la fonction f définie sur \mathbb{R} par $f(x) = x^2 + \cos(x)$ est $F(x) = \frac{1}{3} \times x^3 + \sin(x)$ une primitive de la fonction f définie sur \mathbb{R} par $f(x) = 2x(x^2 + 1)^2$ est...

$$f(x)$$
 est de la forme $u' \times u^2$ avec $u(x) = x^2 + 1$ donc $F(x) = \frac{1}{3} \times (x^2 + 1)^3$

SF4 p81; SF5 p 83 + Exercices 42 à 54 page 92