Pandoravirus : des virus géants qui inventent leurs propres gènes

La famille de virus géants pandoravirus s’enrichit de trois nouveaux membres, isolés par des chercheurs du laboratoire Information génomique et structurale (CNRS/Aix‐Marseille Université), associés au laboratoire Biologie à grande échelle (CEA/Inserm/Université Grenoble‐Alpes) et au CEA-Genoscope. Lors de sa découverte1, cette famille de virus avait étonné par son étrangeté – génomes géants, nombreux gènes sans équivalent connu. Dans Nature Communications le 11 juin 2018, les chercheurs proposent une explication : les pandoravirus seraient des fabriques à nouveaux gènes – et donc à nouvelles fonctions. De phénomènes de foire à innovateurs de l’évolution, les virus géants continuent de secouer les branches de l’arbre de la vie !

En 2013, la découverte de deux virus géants ne ressemblant à rien de connu brouillait la frontière entre monde viral et monde cellulaire1. Ces pandoravirus sont aussi grands que des bactéries et dotés de génomes plus complexes que ceux de certains organismes eucaryotes2. Mais leur étrangeté – une forme inédite d’amphore, un génome énorme3 et atypique – posait aussi la question de leur origine.

La même équipe a depuis isolé trois nouveaux membres de la famille à Marseille, Nouméa et Melbourne. Avec un autre virus trouvé en Allemagne, cela fait désormais six cas connus que l’équipe a comparés par différentes approches. Ces analyses montrent que, malgré une forme et un fonctionnement très similaires, ils ne partageant que la moitié de leurs gènes codant pour des protéines. Or, les membres d’une même famille ont généralement bien plus de gènes en commun…

De plus, ces nouveaux membres de la famille possèdent un grand nombre de gènes orphelins, c’est‐à‐dire codant pour des protéines sans équivalent dans le reste du monde vivant (c’était déjà le cas pour les deux premiers pandoravirus découverts). Cette caractéristique inexpliquée est au cœur de tous les débats sur l’origine des virus. Mais ce qui a le plus étonné les chercheurs, c’est que ces gènes orphelins sont différents d’un pandoravirus à l’autre, rendant de plus en plus improbable qu’ils aient été hérités d’un ancêtre commun à toute la famille !

Analysés par différentes méthodes bioinformatiques, ces gènes orphelins se sont révélés très semblables aux régions non‐codantes (ou intergéniques) du génome des pandoravirus. Face à ces constats, un seul scénario pourrait expliquer à la fois la taille gigantesque des génomes des pandoravirus, leur diversité et leur grande proportion de gènes orphelins : une grande partie des gènes de ces virus naîtrait spontanément et au hasard dans les régions intergéniques. Des gènes « apparaissent » donc à des endroits différents d’une souche à l’autre, ce qui explique leur caractère unique.

Si elle est avérée, cette hypothèse révolutionnaire ferait des virus géants des artisans de la créativité génétique, qui est un élément central, mais encore mal expliqué, de toutes les conceptions de l’origine de la vie et de son évolution.

Ces recherches ont bénéficié, entre autres, d’un financement de la Fondation Bettencourt Schueller à Chantal Abergel, lauréate 2014 du prix « Coup d’élan pour la recherche française ».

Pandoravirs_quercus


© IGS- CNRS/AMU

Pandoravirus quercus, trouvé à Marseille.
Coupe fine visualisée en microscopie électronique. Barre d’échelle : 100 nm.


Télécharger le communiqué de presse : CP pandoravirus_web

Notes :

1 Communiqué de presse du 18 juillet 2013 : Consulter le site web
2 Organismes dont les cellules sont dotées de noyaux, contrairement aux deux autres règnes du vivant, les bactéries et les archées.
3 Jusqu’à 2,7 millions de bases.

Références :

Diversity and evolution of the emerging Pandoraviridae family, Matthieu Legendre, Elisabeth Fabre, Olivier Poirot, Sandra Jeudy, Audrey Lartigue, Jean-Marie Alempic, Laure Beucher, Nadège Philippe, Lionel Bertaux, Eugène Christo-Foroux, Karine Labadie, Yohann Couté, Chantal Abergel, Jean-Michel Claverie. Nature Communications, 11 juin 2018. Consulter le site web

Voir aussi « Behind the paper: Giant pandoraviruses create their own genes » sur le blog Consulter le site web

Tweet about this on TwitterShare on FacebookShare on Google+Share on LinkedInEmail this to someonePrint this page

Le menu des dinosaures révélé par le calcium

En étudiant le calcium de restes fossiles de gisements du Maroc et du Niger, des chercheurs ont pu reconstituer les chaînes alimentaires du passé. Ils expliquent ainsi comment tant de prédateurs pouvaient co-exister au temps des dinosaures. Cette étude, réalisée au Laboratoire de géologie de Lyon : Terre, planètes et environnement (CNRS/ENS de Lyon/Université Claude Bernard Lyon 1) en partenariat avec le Centre de recherche sur la paléobiodiversité et les paléoenvironnements (CNRS/Muséum national d’Histoire naturelle/Sorbonne Université), est publiée le 11 avril 2018 dans la revue Proceedings of the Royal Society of London B.

Il y a une centaine de millions d’années, en Afrique du nord, les écosystèmes terrestres étaient dominés par les grands prédateurs – dinosaures théropodes géants, grands crocodiles –, avec peu d’herbivores en comparaison. Comment tant de carnassiers pouvaient-ils cohabiter ?

Pour le comprendre, des chercheurs français ont étudié des fossiles des dépôts de Gadoufaoua au Niger (datés de 120 millions d’années) et de la formation des Kem-Kem au Maroc (100 millions d’années), deux sites avec une surabondance de prédateurs par rapport aux dinosaures herbivores retrouvés sur place. Plus précisément, ils ont mesuré les proportions de différents isotopes1 du calcium dans les restes fossilisés (émail des dents, écailles de poissons).

En effet, chez les vertébrés, le calcium provient quasi-exclusivement de l’alimentation. Comparer la composition isotopique des proies potentielles (poissons, herbivores) à celle des dents de carnivores permet donc de remonter au régime de ces derniers.

Les données obtenues montrent des préférences alimentaires similaires dans les deux gisements : certains grands dinosaures carnassiers (abélisauridés et carcharodontosauridés) chassaient préférentiellement des proies terrestres telles que les dinosaures herbivores, d’autres (les spinosaures) étaient piscivores2 ; le régime du crocodile géant Sarcosuchus était intermédiaire, composé de proies terrestres et aquatiques. Ainsi, les différents prédateurs évitaient la compétition grâce à un partage subtil des ressources alimentaires.

Certains fossiles exceptionnels, présentant des traces de morsure ou un contenu stomacal, avaient déjà livré des indices sur l’alimentation des dinosaures ; mais ces témoignages restent rares. L’avantage de la méthode isotopique du calcium est de produire un panorama global des habitudes alimentaires à l’échelle de l’écosystème. Elle ouvre donc des perspectives pour l’étude des chaînes alimentaires du passé.

Cette étude a bénéficié du soutien du Labex Institut des origines de Lyon, de l’Institut national des sciences de l’Univers du CNRS (à travers le projet Diunis) et de la Jurassic Foundation.

Dents Gadoufaoua


© Auguste Hassler / LGL-TPE / CNRS-ENS de Lyon-Université Lyon 1

Dents du gisement de Gadoufaoua (Niger). La barre d’échelle représente 2 cm.
De gauche à droite : dents d’un crocodile géant Sarcosuchus imperator, d’un spinosaure, d’un théropode non spinosaure (abélisauridé ou carcharodontosauridé), d’un ptérosaure, d’un ouranosaure (dinosaure herbivore), d’un pycnodonte (poisson) et d’un petit crocodilomorphe.


Télécharger le communiqué de presse : CP menu dinosaures

Tweet about this on TwitterShare on FacebookShare on Google+Share on LinkedInEmail this to someonePrint this page

Comment les plantes ressentent-elles la gravité ?

Les plantes sont capables de sentir des inclinaisons mêmes très faibles. Pourtant, le mécanisme végétal pour mesurer la gravité est composé de grains microscopiques, un outil de détection de l’inclinaison très peu précis a priori. Des chercheurs du CNRS, de l’Inra et de l’Université Clermont Auvergne ont expliqué ce curieux paradoxe en observant que ces grains sont agités en permanence dans les cellules végétales, ce qui confère au système granulaire des propriétés proches de celles d’un liquide, comme dans un niveau à bulle. Ces résultats ont été publiés le 30 avril dans PNAS

Germe de blé et statolithes

© Yoel Forterre/Olivier Pouliquen/PNAS Redressement d’un germe de blé initialement incliné et zoom une cellule montrant l’empilement de statolithes (micrograins d’amidon) à l’origine de la détection de la gravité par les plantes.

Télécharger le communiqué de presse au format PDF : CP Statolithes FrWEB

Tweet about this on TwitterShare on FacebookShare on Google+Share on LinkedInEmail this to someonePrint this page

Les anciens océans étaient-ils chauds ?

 Révélations d’un système hydrothermal fossile

Des chercheurs du laboratoire Géosciences environnement Toulouse (GET/OMP – CNRS/IRD/CNES/UT3 Paul Sabatier) et de l’Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG) de l’Université de São Paulo viennent de démontrer que la composition isotopique en oxygène des océans néoprotérozoïques (ici environ 760 million d’années) était similaire à celle des océans actuels. Ce résultat combiné aux paléo-thermomètres existants confirmerait l’hypothèse que les océans anciens étaient plus chauds qu’actuellement. Cette étude est publiée dans la revue Nature Communications, le 13 avril 2018.

Télécharger le communiqué de presse :  CP paléotempératures océan
Tweet about this on TwitterShare on FacebookShare on Google+Share on LinkedInEmail this to someonePrint this page