Blanchissement des anémones et baisse de fécondité des poissons-clowns

Le blanchissement des coraux est une conséquence bien connue du réchauffement climatique… Voir l’article :Les coraux menacés de disparition en 2050

© Suzanne C. Mills
Poissons-clowns et anémones dans les récifs autour de l’île de Moorea.
La teinte dorée des anémones est due à des microalgues présentes dans leurs tentacules.
Au cours d’épisodes de températures élevées, les microalgues en symbiose avec les anémones ou les coraux sont expulsées, ce qui produit le blanchissement de ces derniers.

Les anémones de mer blanchissent elles aussi . Et cela affaiblit la fécondité des poissons-clowns associés à ces anémones, comme viennent de le montrer, en Polynésie française, des chercheurs du Centre de recherches insulaires et observatoire de l’environnement (CNRS/EPHE/Université de Perpignan Via Domitia). Après une étude de 14 mois, ils publient leurs résultats dans la revue Nature Communications le 10 octobre 2017

Après une étude de 14 mois, ils publient leurs résultats dans la revue Nature Communications le 10 octobre 2017( Cascading fitness effects of thermally-induced anemone bleaching on associated anemonefish hormonal stress response and reproduction, Ricardo Beldade, Agathe Blandin, Rory O’Donnell, Suzanne C. Mills. Nature Communications, 10 octobre 2017. DOI : 10.1038/s41467-017-00565-w)

Télécharger le communiqué de presse du CNRS : CP blanchissement anémones

Certaines éruptions volcaniques peuvent déclencher El Niño

Une étude internationale, coordonnée par une chercheuse de l’IRD, montre que les éruptions volcaniques stratosphériques peuvent déclencher des événements El Niño dans le Pacifique.

El Niño ? 

El Niño est une oscillation australe des courants océaniques (ENSO : El Niño Southern Oscillation). Il atteint son apogée vers Noël, d’où son nom ( en espagnol) qui fait référence à l’enfant Jésus.

Des précisions sur cette  oscillation

Elle consiste en un renversement de la circulation des alizés de sud-est dans le Pacifique sud mettant fin à la remontée d’eaux froides le long des côtes du Pérou.

« Pour comprendre le rôle clé de l’atmosphère dans la genèse d’El Niño il faut tout d’abord avoir à l’esprit que la température de la surface de l’océan Pacifique tropical n’est pas uniforme, mais s’élève graduellement en direction de l’ouest. Alors que les 100 premiers mètres de la colonne d’eau ne dépassent pas 22 °C près des côtes péruviennes, celle-ci avoisine 30 °C au large de l’Indonésie : c’est ce que les climatologues appellent la warm pool ou piscine d’eau chaude du Pacifique ».( source CNRS)

« En temps normal, les alizés soufflant depuis l’est ont tendance à confiner cet important volume d’eau chaude au voisinage de l’archipel indonésien. Mais, lors d’une année El Niño, le régime des alizés faiblit drastiquement allant même jusqu’à s’inverser  », souligne Eric Guilyardi.

« Cette accumulation soudaine d’eau chaude près des côtes du Pérou interrompt la remontée d’eaux froides et riches en nutriments permettant le développement de nombreuses espèces », précise Boris Dewitte,

nino_1_et_2

Comparaison entre une situation normale dans le Pacifique tropical et une situation El Niño. Dans le deuxième cas, les alizés s’affaiblissent et les eaux chaudes envahissent le centre et l’est du Pacifique tropical, modifiant le régime des vents et des précipitations sur toute la planète

La fréquence d’apparition des  événements El Niño est irrégulière, environ tous les 2 à 7 ans. Les conséquences sont considérables…

Une étude internationale, coordonnée par une chercheuse de l’IRD, montre que les éruptions volcaniques stratosphériques ( ex: le Pinatubo en 1991)peuvent déclencher des événements El Niño dans le Pacifique.

Les chercheurs ont identifié pour la première fois les mécanismes physiques à l’œuvre : le refroidissement de la surface du continent africain, qui diminue l’intensité de la mousson et provoque une «anomalie de chaleur» à l’origine d’un coup de vent d’Ouest responsable du déclenchement d’El Niño. Ces résultats, qui associent des chercheurs de l’UPMC et du CNRS, sont publiés le 3 octobre 2017 dans la revue Nature Communications.

Télécharger le communiqué de presse du CNRS : impact eruptions El nino

la matière organique de Tchouri plus ancienne que le système solaire

La matière organique des comètes  serait plus ancienne que le système solaire

voir l’article sur Rosetta et Tchouri

La matière organique découverte massivement dans le noyau de la comète “Tchouri” par la sonde Rosetta n’aurait pas été fabriquée au moment de la formation du système solaire, mais auparavant, dans l’espace interstellaire. C’est la théorie avancée par deux chercheurs français, dans un article publié le 31 août 2017 dans MNRAS

Terminée en septembre 2016, la mission Rosetta de l’ESA a révélé que la matière organique représente près de 40% de la masse du noyau de la comète « Tchouri » (67P Churyumov-Gerasimenko). Composée de molécules à base de carbone, d’hydrogène, d’azote et d’oxygène, elle constitue l’une des briques de base de la vie telle que nous la connaissons sur Terre. Or cette matière organique trouvée en masse n’aurait pas été fabriquée au moment de la formation du système solaire, mais bien avant, dans le milieu interstellaire. C’est ce qu’avancent aujourd’hui Jean-Loup Bertaux, du Laboratoire atmosphères, milieux, observations spatiales (CNRS/UPMC/Univ. Versailles–Saint-Quentin-en-Yvelines), et Rosine Lallement, du laboratoire Galaxies, étoiles, physique et instrumentation (Observatoire de Paris/CNRS/Université Paris Diderot).  Et selon ces deux chercheurs français, une bonne partie de cette matière organique cométaire serait même déjà bien connue des astronomes.

Voilà 70 ans que l’analyse du spectre de la lumière des étoiles montre partout dans le milieu interstellaire des absorptions inconnues, à des longueurs d’ondes bien précises : les « Diffuse interstellar bands » (DIB),  attribuées à des molécules organiques complexes, qui constitueraient « le plus grand réservoir connu de matière organique dans l’univers » selon l’astrophysicien américain Theodore Snow. Cette matière organique interstellaire est généralement proportionnelle à la matière interstellaire dans son ensemble, sauf dans le cas d’un nuage très dense, comme une nébuleuse proto-solaire : au cœur de la nébuleuse, où la matière est encore plus dense, les DIB plafonnent, voire diminuent. C’est le signe que les molécules organiques qui provoquent les DIB disparaissent, par agglutination les unes aux autres. Une fois collées ensembles, elles ne peuvent plus absorber autant que lorsqu’elles flottent librement dans l’espace.

Ce type de nébuleuse primitive finit par former, par contraction, un système solaire comme le nôtre, composé de planètes… et de comètes. Or, on sait depuis la mission Rosetta que les noyaux de comètes se sont formés par accrétion hiérarchique dans la nébuleuse : les petits grains se sont collés les uns aux autres pour former des grains plus gros, lesquels se sont agglomérés à leur tour jusqu’à atteindre la taille d’un noyau de comète, de quelques kilomètres. Un processus non violent.

Les molécules organiques provoquant les DIBs et préexistantes dans les nébuleuses primitives n’ont donc probablement pas été détruites mais ont pu faire partie des grains constituant les noyaux cométaires, où elles sont toujours 4,6 milliards d’années plus tard. Une mission spatiale de retour d’échantillon, qui permettrait d’analyser en laboratoire la matière organique d’une comète, révèlerait enfin la nature exacte de cette mystérieuse matière interstellaire responsable des absorptions relevées vers les étoiles.

Si la matière organique des comètes a bel et bien été fabriquée dans le milieu interstellaire, et si elle a pu jouer un rôle dans l’émergence de la vie sur la Terre comme les scientifiques l’imaginent aujourd’hui, alors elle a pu également atteindre un grand nombre d’autres planètes de notre galaxie… et y engendrer également la vie ?

Image cp


© ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Le noyau de la comète « Tchouri » (Churyumov-Gerasimenko) observé par la sonde européenne Rosetta. source CNRS

Télécharger le communiqué de presse du CNRS : CP_Rosetta_web

l’iceberg Larsen C s’est décroché


Antarctique : l’iceberg Larsen C s’est décroché

Le 12 juillet, l’iceberg Larsen C s’est décroché

« Le réchauffement climatique est responsable en partie de ce phénomène, mais pas directement de la séparation de l’iceberg Larsen C », explique Adrian Luckman de l’université de Swansea (Royaume-Uni).

« A moyen et long terme ce n’est pas une bonne nouvelle pour l’élévation du niveau des mers », commente Jean Jouzel, glaciologue.

Les icebergs?

Un iceberg est un bloc de glace d’eau douce dérivant sur la mer .
Il  se détache du front des glaciers polaires ou d’une barrière de glace flottante.
90 % de son volume  est situé sous la surface de l’eau.
La flottabilité de l’iceberg s’explique par la poussée d’Archimède.
Un gigantesque iceberg de 5 000 kilomètres carrés s’est détaché de la péninsule Antarctique ( barrière de Larsen)
 

En jaune la barrière de Larsen au nord-ouest de la mer de Weddell, s’étendant le long de la côte orientale de la péninsule Antarctique

@ NASA :Rift in Antarctica’s Larsen C Ice Shelf

 

 

 Après quelques mois de progression régulière depuis le dernier événement, la faille de la barrière de Larsen  a rejoint la mer (elle avait soudainement augmenté de 18 km au cours de la deuxième moitié de décembre 2016.)

L’emplacement actuel de la faille sur Larsen C, à partir de Janvier 2017. Les étiquettes mettent en évidence des sauts significatifs. Les positions de pointe sont dérivées des données Landsat (USGS) et Sentinel-1 InSAR (ESA). L’image d’arrière-plan mélange BEDMAP2 Elevation (BAS) avec MODIS MOA2009 Image mosaic (NSIDC). Autres données de SCAR ADD et OSM.

 
  CNRS Le journal fait le point sur ces montagnes de glace qui dérivent en mer.

D’où viennent-elles ? Pourquoi flottent-elles ? De quoi sont-elles faites ? Réponses en images

Cliquez sur l’image ci dessous pour afficher le diaporama

iceberg :@Erwan AMICE/LEMAR/CNRS Photothèque Un grand merci à Jean Tournadre, chercheur Ifremer du Laboratoire d’océanographie physique et spatiale (unité CNRS/Ifremer/IRD/Univ. Bretagne occidentale) pour son expertise et ses conseils avisés.